原文链接https://www.cnblogs.com/zhouzhendong/p/AtCoder-SoundHound-Inc-Programming-Contest-2018-E.html

题目传送门 - AtCoder SoundHound Inc. Programming Contest 2018 E

题意

  给定一个无向连通图,有 $n$ 个节点 $m$ 条带权边,第 $i$ 条边连接 $x_i,y_i$ ,权值为 $s_i$ ,没有重边、自环。

  现在,请你给每一个节点取一个正整数点权。问有多少种方案使得任意一条边两端的节点权值和等于边权。

  $2\leq n\leq 100000,1\leq m\leq 100000$

  所有输入的数字都在 $10^9$ 以内。

题解

  先吐槽:

    这题细节好坑啊!!!我当场做到只 WA 一个点,没想到 20 分钟还是没有发现特判,然后 GG 。然后考完发现在我没注意的地方忘记特判了??然后考完不到10分钟把它过了。就加了几行。

  然后讲做法。

  设 $v_i$ 为第 $i$ 个点的点权。

  首先,我们考虑到对于所有的 $i$ ,有 $v_{x_i}+v_{y_i}=s_i$ 。我们把式子移动一下,得到:

$$v_{x_i}-s_i=(-v_{y_i})$$

$$(-v_{y_i})+s_i=v_{x_i}$$

$$v_{y_i}-s_i=(-v_{x_i})$$

$$(-v_{x_i})+s_i=v_{y_i}$$

  我们使节点 $1$ 作为初始节点,即令 $v_1=\alpha$ 。

  我们考虑将每一个点拆成两个点,一个点记录其正的权值(即 $v_i=\alpha + k$ 时,记录的值为 $k$ ),另一个点记录其负权值(即 $-v_i=\alpha+k$ ,记录的值为 $k$)。

  然后我们对于每一条边,拆成上述四条有向边。

  然后 bfs 一遍把每一个点与 $\alpha$ 的关系求出来。这里注意一点,如果到达一个点有两条距离不同的路径,那么显然答案为 $0$ 。(条件冲突)

  然后我们得到了一些数据。

  我们考虑去解决那些拆点之后两个节点都被访问的节点。

  对于每一个这样的节点,我们可以解出唯一的 $\alpha$ ,如果所有节点的解有不同,那么答案显然是 $0$ 。否则答案显然是 $1$ 。

  请您先思索一下在选中下面黑色矩形区域内的字看下面的话。

  这样是错的!!我就是挂在这里了。我们不能这么着急的确定答案是 $1$ 。因为我们还需要满足所有点权均为正整数。所以我们还需要判一判。

  然后就只剩下二分图的情况了。

  对于这种情况,我们只需要根据每一个节点与初始节点 $1$ 的关系,根据“正整数”这个条件更新 $\alpha$ 的取值范围。最后输出即可。

代码

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N=400005;
struct Gragh{
int cnt,y[N],z[N],nxt[N],fst[N];
void clear(){
cnt=0;
memset(fst,0,sizeof fst);
}
void add(int a,int b,int c){
y[++cnt]=b,z[cnt]=c,nxt[cnt]=fst[a],fst[a]=cnt;
}
}g;
int n,m;
int q[N],head,tail;
LL dis[N];
LL INF=10000000000000000LL;
void out0(){
puts("0");
exit(0);
}
void SPFA(int S){
for (int i=1;i<=n*2;i++)
dis[i]=INF;
head=tail=0;
q[++tail]=S;
dis[S]=0;
while (head!=tail){
int x=q[++head],y;
for (int i=g.fst[x];i;i=g.nxt[i]){
int y=g.y[i];
if (dis[y]!=dis[x]+g.z[i]){
if (dis[y]!=INF)
out0();
dis[y]=dis[x]+g.z[i];
q[++tail]=y;
}
}
}
}
int main(){
scanf("%d%d",&n,&m);
g.clear();
for (int i=1;i<=m;i++){
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
g.add(a,b+n,-c);
g.add(b+n,a,c);
g.add(b,a+n,-c);
g.add(a+n,b,c);
}
SPFA(1);
LL v=INF;
for (int i=1;i<=n;i++)
if (dis[i]!=INF&&dis[i+n]!=INF){
LL A=dis[i],B=dis[i+n];
if ((A+B)%2LL)
out0();
LL x=-(A+B)/2LL;
if (x!=v)
if (v==INF)
v=x;
else
out0();
}
if (v!=INF){
int f=1;
for (int i=1;i<=n;i++){
if (dis[i]!=INF)
if (v+dis[i]<=0)
f=0;
if (dis[i+n]!=INF)
if (v+dis[i+n]>=0)
f=0;
}
printf("%d",f);
return 0;
}
LL MIN=1,MAX=INF;
for (int i=1;i<=n;i++)
if (dis[i]!=INF)
MIN=max(MIN,-dis[i]+1);
else
MAX=min(MAX,-dis[i+n]-1);
printf("%lld",max(MAX-MIN+1,0LL));
return 0;
}

  

AtCoder SoundHound Inc. Programming Contest 2018 E + Graph (soundhound2018_summer_qual_e)的更多相关文章

  1. SoundHound Inc. Programming Contest 2018

    A - F Time Limit: 2 sec / Memory Limit: 1024 MB Score : 100100 points Problem Statement You are give ...

  2. ACM International Collegiate Programming Contest, Tishreen Collegiate Programming Contest (2018) Syria, Lattakia, Tishreen University, April, 30, 2018

    ACM International Collegiate Programming Contest, Tishreen Collegiate Programming Contest (2018) Syr ...

  3. German Collegiate Programming Contest 2018​ B. Battle Royale

    Battle Royale games are the current trend in video games and Gamers Concealed Punching Circles (GCPC ...

  4. The North American Invitational Programming Contest 2018 D. Missing Gnomes

    A family of nn gnomes likes to line up for a group picture. Each gnome can be uniquely identified by ...

  5. The North American Invitational Programming Contest 2018 H. Recovery

    Consider an n \times mn×m matrix of ones and zeros. For example, this 4 \times 44×4: \displaystyle \ ...

  6. The North American Invitational Programming Contest 2018 E. Prefix Free Code

    Consider nn initial strings of lower case letters, where no initial string is a prefix of any other ...

  7. AtCoder diverta 2019 Programming Contest 2

    AtCoder diverta 2019 Programming Contest 2 看起来我也不知道是一个啥比赛. 然后就写写题解QWQ. A - Ball Distribution 有\(n\)个 ...

  8. German Collegiate Programming Contest 2018​ C. Coolest Ski Route

    John loves winter. Every skiing season he goes heli-skiing with his friends. To do so, they rent a h ...

  9. 【AtCoder】M-SOLUTIONS Programming Contest

    M-SOLUTIONS Programming Contest A - Sum of Interior Angles #include <bits/stdc++.h> #define fi ...

随机推荐

  1. Vuex与axios介绍

    Vuex集中式状态管理里架构 axios (Ajax) Vuex集中式状态管理架构 -简单介绍: vuex是一个专门为Vue.js设计的集中式状态管理架构. 我们把它理解为在data中需要共享给其他组 ...

  2. 解决layui选中项下一页清空问题

    项目中遇到给用户在所有产品中匹配一部分产品.用layui 第一页选好之后到第二页再选,等回到第一页时之前选择的都没了,解决这个问题的办法如下: //勾选的产品id集合 var chooseAdids ...

  3. git 创建分支

  4. Netflix正式开源其API网关Zuul 2

    5 月 21 日,Netflix 在其官方博客上宣布正式开源微服务网关组件 Zuul 2.Netflix 公司是微服务界的楷模,他们有大规模生产级微服务的成功应用案例,也开源了相当多的微服务组件(详见 ...

  5. Jquery简单使用

    展示:$("#id").show(); 隐藏:$("#id").hide();

  6. struts2 过滤器和拦截器的区别和使用

    java web 过滤器和拦截器的区别和使用  1.1 什么是拦截器:      拦截器,在AOP(Aspect-Oriented Programming)中用于在某个方法或字段被访问之前,进行拦截然 ...

  7. 《Oracle DBA工作笔记:运维、数据迁移与性能调优》 PDF 下载

    一:下载途径 二:本书图样 三:本书目录 第1篇 数据库运维篇第1章 数据库安装配置1.1 安装前的准备 11.2 安装数据库软件 51.2.1 方法1:OUI安装 61.2.2 方法2:静默安装 8 ...

  8. Confluence 6 在你用户宏中使用参数

    你可以为你的用户宏指定参数.这样的话,用户可以使用参数来决定 Confluence 页面的显示情况. 如何在 Confluence 页面中使用你的宏参数 当添加一个宏到 Confluence 页面中的 ...

  9. javaScript遍历对象、数组总结

        javaScript遍历对象总结 1.使用Object.keys()遍历 返回一个数组,包括对象自身的(不含继承的)所有可枚举属性(不含Symbol属性). var obj = {'0':'a ...

  10. 初见TensorFlow :知其所以然

    2.1 TensorFlow的主要依赖包 TensorFlow依赖的两个最主要的工具包——Protocol Buffer和Bazel. 2.1.1 Protocol Buffer Protocol B ...