在进行程序跟踪时,会出现汇编。由于ASM盲,所以添加不少烦恼。有烦恼得想办法解决。对,扫盲ASM。

这里是教材,感觉大白话很好理解(感谢 http://www.ruanyifeng.com/blog/2018/01/assembly-language-primer.html)

一、汇编语言是什么?

我们知道,CPU 只负责计算,本身不具备智能。你输入一条指令(instruction),它就运行一次,然后停下来,等待下一条指令。

这些指令都是二进制的,称为操作码(opcode),比如加法指令就是00000011编译器的作用,就是将高级语言写好的程序,翻译成一条条操作码。

对于人类来说,二进制程序是不可读的,根本看不出来机器干了什么。为了解决可读性的问题,以及偶尔的编辑需求,就诞生了汇编语言。

汇编语言是二进制指令的文本形式,与指令是一一对应的关系。比如,加法指令00000011写成汇编语言就是 ADD。只要还原成二进制,汇编语言就可以被 CPU 直接执行,所以它是最底层的低级语言。

【讲的通俗易懂】

二、来历

最早的时候,编写程序就是手写二进制指令,然后通过各种开关输入计算机,比如要做加法了,就按一下加法开关。后来,发明了纸带打孔机,通过在纸带上打孔,将二进制指令自动输入计算机。

为了解决二进制指令的可读性问题,工程师将那些指令写成了八进制。二进制转八进制是轻而易举的,但是八进制的可读性也不行。很自然地,最后还是用文字表达,加法指令写成 ADD。内存地址也不再直接引用,而是用标签表示。

这样的话,就多出一个步骤,要把这些文字指令翻译成二进制,这个步骤就称为 assembling,完成这个步骤的程序就叫做 assembler。它处理的文本,自然就叫做 aseembly code。标准化以后,称为 assembly language,缩写为 asm,中文译为汇编语言。

每一种 CPU 的机器指令都是不一样的,因此对应的汇编语言也不一样。本文介绍的是目前最常见的 x86 汇编语言,即 Intel 公司的 CPU 使用的那一种。

三、寄存器

学习汇编语言,首先必须了解两个知识点:寄存器和内存模型。

先来看寄存器。CPU 本身只负责运算,不负责储存数据。数据一般都储存在内存之中,CPU 要用的时候就去内存读写数据。但是,CPU 的运算速度远高于内存的读写速度,为了避免被拖慢,CPU 都自带一级缓存和二级缓存。基本上,CPU 缓存可以看作是读写速度较快的内存。

但是,CPU 缓存还是不够快,另外数据在缓存里面的地址是不固定的,CPU 每次读写都要寻址也会拖慢速度。因此,除了缓存之外,CPU 还自带了寄存器(register),用来储存最常用的数据。也就是说,那些最频繁读写的数据(比如循环变量),都会放在寄存器里面,CPU 优先读写寄存器,再由寄存器跟内存交换数据。

寄存器不依靠地址区分数据,而依靠名称。每一个寄存器都有自己的名称,我们告诉 CPU 去具体的哪一个寄存器拿数据,这样的速度是最快的。有人比喻寄存器是 CPU 的零级缓存。

四、寄存器的种类

早期的 x86 CPU 只有8个寄存器,而且每个都有不同的用途。现在的寄存器已经有100多个了,都变成通用寄存器,不特别指定用途了,但是早期寄存器的名字都被保存了下来。

  • EAX
  • EBX
  • ECX
  • EDX
  • EDI
  • ESI
  • EBP
  • ESP

上面这8个寄存器之中,前面七个都是通用的。ESP 寄存器有特定用途,保存当前 Stack 的地址(详见下一节)。

我们常常看到 32位 CPU、64位 CPU 这样的名称,其实指的就是寄存器的大小。32 位 CPU 的寄存器大小就是4个字节。

五、内存模型:Heap

寄存器只能存放很少量的数据,大多数时候,CPU 要指挥寄存器,直接跟内存交换数据。所以,除了寄存器,还必须了解内存怎么储存数据。

程序运行的时候,操作系统会给它分配一段内存,用来储存程序和运行产生的数据。这段内存有起始地址和结束地址,比如从0x10000x8000,起始地址是较小的那个地址,结束地址是较大的那个地址。

程序运行过程中,对于动态的内存占用请求(比如新建对象,或者使用malloc命令),系统就会从预先分配好的那段内存之中,划出一部分给用户,具体规则是从起始地址开始划分(实际上,起始地址会有一段静态数据,这里忽略)。举例来说,用户要求得到10个字节内存,那么从起始地址0x1000开始给他分配,一直分配到地址0x100A,如果再要求得到22个字节,那么就分配到0x1020

这种因为用户主动请求而划分出来的内存区域,叫做 Heap(堆)。它由起始地址开始,从低位(地址)向高位(地址)增长。Heap 的一个重要特点就是不会自动消失,必须手动释放,或者由垃圾回收机制来回收。

六、内存模型:Stack

除了 Heap 以外,其他的内存占用叫做 Stack(栈)。简单说,Stack 是由于函数运行而临时占用的内存区域。

请看下面的例子。


int main() {
int a = 2;
int b = 3;
}

上面代码中,系统开始执行main函数时,会为它在内存里面建立一个帧(frame),所有main的内部变量(比如ab)都保存在这个帧里面。main函数执行结束后,该帧就会被回收,释放所有的内部变量,不再占用空间。

如果函数内部调用了其他函数,会发生什么情况?


int main() {
int a = 2;
int b = 3;
return add_a_and_b(a, b);
}

上面代码中,main函数内部调用了add_a_and_b函数。执行到这一行的时候,系统也会为add_a_and_b新建一个帧,用来储存它的内部变量。也就是说,此时同时存在两个帧:mainadd_a_and_b。一般来说,调用栈有多少层,就有多少帧。

等到add_a_and_b运行结束,它的帧就会被回收,系统会回到函数main刚才中断执行的地方,继续往下执行。通过这种机制,就实现了函数的层层调用,并且每一层都能使用自己的本地变量。

所有的帧都存放在 Stack,由于帧是一层层叠加的,所以 Stack 叫做栈。生成新的帧,叫做"入栈",英文是 push;栈的回收叫做"出栈",英文是 pop。Stack 的特点就是,最晚入栈的帧最早出栈(因为最内层的函数调用,最先结束运行),这就叫做"后进先出"的数据结构。每一次函数执行结束,就自动释放一个帧,所有函数执行结束,整个 Stack 就都释放了。

Stack 是由内存区域的结束地址开始,从高位(地址)向低位(地址)分配。比如,内存区域的结束地址是0x8000,第一帧假定是16字节,那么下一次分配的地址就会从0x7FF0开始;第二帧假定需要64字节,那么地址就会移动到0x7FB0

七、CPU 指令

7.1 一个实例

了解寄存器和内存模型以后,就可以来看汇编语言到底是什么了。下面是一个简单的程序example.c


int add_a_and_b(int a, int b) {
return a + b;
} int main() {
return add_a_and_b(2, 3);
}

gcc 将这个程序转成汇编语言。


$ gcc -S example.c

上面的命令执行以后,会生成一个文本文件example.s,里面就是汇编语言,包含了几十行指令。这么说吧,一个高级语言的简单操作,底层可能由几个,甚至几十个 CPU 指令构成。CPU 依次执行这些指令,完成这一步操作。

example.s经过简化以后,大概是下面的样子。


_add_a_and_b:
push %ebx
mov %eax, [%esp+8]
mov %ebx, [%esp+12]
add %eax, %ebx
pop %ebx
ret _main:
push 3
push 2
call _add_a_and_b
add %esp, 8
ret

可以看到,原程序的两个函数add_a_and_bmain,对应两个标签_add_a_and_b_main。每个标签里面是该函数所转成的 CPU 运行流程。

每一行就是 CPU 执行的一次操作。它又分成两部分,就以其中一行为例。


push %ebx

这一行里面,push是 CPU 指令,%ebx是该指令要用到的运算子。一个 CPU 指令可以有零个到多个运算子。

下面我就一行一行讲解这个汇编程序,建议读者最好把这个程序,在另一个窗口拷贝一份,省得阅读的时候再把页面滚动上来。

7.2 push 指令

根据约定,程序从_main标签开始执行,这时会在 Stack 上为main建立一个帧,并将 Stack 所指向的地址,写入 ESP 寄存器。后面如果有数据要写入main这个帧,就会写在 ESP 寄存器所保存的地址。

然后,开始执行第一行代码。


push 3

push指令用于将运算子放入 Stack,这里就是将3写入main这个帧。

虽然看上去很简单,push指令其实有一个前置操作。它会先取出 ESP 寄存器里面的地址,将其减去4个字节,然后将新地址写入 ESP 寄存器。使用减法是因为 Stack 从高位向低位发展,4个字节则是因为3的类型是int,占用4个字节。得到新地址以后, 3 就会写入这个地址开始的四个字节。


push 2

第二行也是一样,push指令将2写入main这个帧,位置紧贴着前面写入的3。这时,ESP 寄存器会再减去 4个字节(累计减去8)。

7.3 call 指令

第三行的call指令用来调用函数。


call _add_a_and_b

上面的代码表示调用add_a_and_b函数。这时,程序就会去找_add_a_and_b标签,并为该函数建立一个新的帧。

下面就开始执行_add_a_and_b的代码。


push %ebx

这一行表示将 EBX 寄存器里面的值,写入_add_a_and_b这个帧。这是因为后面要用到这个寄存器,就先把里面的值取出来,用完后再写回去。

这时,push指令会再将 ESP 寄存器里面的地址减去4个字节(累计减去12)。

7.4 mov 指令

mov指令用于将一个值写入某个寄存器。


mov %eax, [%esp+8]

这一行代码表示,先将 ESP 寄存器里面的地址加上8个字节,得到一个新的地址,然后按照这个地址在 Stack 取出数据。根据前面的步骤,可以推算出这里取出的是2,再将2写入 EAX 寄存器。

下一行代码也是干同样的事情。


mov %ebx, [%esp+12]

上面的代码将 ESP 寄存器的值加12个字节,再按照这个地址在 Stack 取出数据,这次取出的是3,将其写入 EBX 寄存器。

7.5 add 指令

add指令用于将两个运算子相加,并将结果写入第一个运算子。


add %eax, %ebx

上面的代码将 EAX 寄存器的值(即2)加上 EBX 寄存器的值(即3),得到结果5,再将这个结果写入第一个运算子 EAX 寄存器。

7.6 pop 指令

pop指令用于取出 Stack 最近一个写入的值(即最低位地址的值),并将这个值写入运算子指定的位置。


pop %ebx

上面的代码表示,取出 Stack 最近写入的值(即 EBX 寄存器的原始值),再将这个值写回 EBX 寄存器(因为加法已经做完了,EBX 寄存器用不到了)。

注意,pop指令还会将 ESP 寄存器里面的地址加4,即回收4个字节。

7.7 ret 指令

ret指令用于终止当前函数的执行,将运行权交还给上层函数。也就是,当前函数的帧将被回收。


ret

可以看到,该指令没有运算子。

随着add_a_and_b函数终止执行,系统就回到刚才main函数中断的地方,继续往下执行。


add %esp, 8

上面的代码表示,将 ESP 寄存器里面的地址,手动加上8个字节,再写回 ESP 寄存器。这是因为 ESP 寄存器的是 Stack 的写入开始地址,前面的pop操作已经回收了4个字节,这里再回收8个字节,等于全部回收。


ret

最后,main函数运行结束,ret指令退出程序执行。

八、参考链接

扫盲ASM的更多相关文章

  1. 【TTS】传输表空间AIX asm -> linux asm

    [TTS]传输表空间AIX asm -> linux asm 一.1  BLOG文档结构图       一.2  前言部分   一.2.1  导读和注意事项 各位技术爱好者,看完本文后,你可以掌 ...

  2. 【TTS】传输表空间Linux asm -> AIX asm

    [TTS]传输表空间Linux asm -> AIX asm 一.1  BLOG文档结构图       一.2  前言部分   一.2.1  导读和注意事项 各位技术爱好者,看完本文后,你可以掌 ...

  3. Exception in thread "main" java.lang.NoSuchMethodError: org.objectweb.asm.ClassWriter.<init>(I)V

    在学习CGlib动态代理时,遇到如下错误: Exception in thread "main" java.lang.NoSuchMethodError: org.objectwe ...

  4. [转载]敏捷开发之Scrum扫盲篇

    现在敏捷开发是越来越火了,人人都在谈敏捷,人人都在学习Scrum和XP...      为了不落后他人,于是我也开始学习Scrum,今天主要是对我最近阅读的相关资料,根据自己的理解,用自己的话来讲述S ...

  5. ECMAScript 6 扫盲

    ECMAScript 6 目前基本成为业界标准,它的普及速度比 ES5 要快很多,主要原因是现代浏览器对 ES6 的支持相当迅速,尤其是 Chrome 和 Firefox 浏览器,已经支持 ES6 中 ...

  6. Oracle从文件系统迁移到ASM存储

    环境:RHEL 6.4 + Oracle 11.2.0.4 需求:数据库存储由文件系统迁移到ASM 数据库存储迁移到ASM磁盘组 1.1 编辑参数文件指定新的控制文件路径 1.2 启动数据库到nomo ...

  7. Linux平台oracle 11g单实例 + ASM存储 安装部署 快速参考

    操作环境:Citrix虚拟化环境中申请一个Linux6.4主机(模板)目标:创建单机11g + ASM存储 数据库 1. 主机准备 2. 创建ORACLE 用户和组成员 3. 创建以下目录并赋予对应权 ...

  8. 单机静默安装GI软件并创建ASM实例和ASM磁盘组

    环境:RHEL 6.4 + Oracle 11.2.0.4 需求:单机静默安装GI软件并创建ASM实例和ASM磁盘组,为后续迁移数据库文件到ASM做准备 1. 安装配置GI软件 2. 创建ASM实例 ...

  9. ASM磁盘组扩容流程

    环境:RHEL 6.5 + GI 11.2.0.4 + Oracle 11.2.0.4 1.确认磁盘权限正确 2.图形界面配置 3.启用asmca配置 4.修改磁盘组rebalance power级别 ...

  10. Linux 6.5(oracle 11.2.0.4)单实例ASM安装

    Linux 6.5(oracle 11.2.0.4) 1.解析主机.配置网络等 /etc/hosts /etc/sysconfig/network /etc/init.d/NetworkManager ...

随机推荐

  1. biancheng-Maven依赖

    目录http://c.biancheng.net/maven2/profile.html 1Maven简介2Maven安装与配置3Maven POM4创建Maven项目5Maven项目的构建与测试6M ...

  2. C# 单例简单实例

    1 using System; 2 using System.Collections.Generic; 3 using System.ComponentModel; 4 using System.Li ...

  3. Svelte 最新中文文档翻译(5)—— 基础标记

    前言 Svelte,一个非常"有趣".用起来"很爽"的前端框架.从 Svelte 诞生之初,就备受开发者的喜爱,根据统计,从 2019 年到 2024 年,连续 ...

  4. 认识soui4js(第4篇):定义一个窗口类,响应控件的事件

    soui4js基于soui4设计实现. 首先我们看一下soui4中如何定义一个窗口类. soui4最基本的窗口类是SHostWnd和SHostDialog,它需要一个布局xml. 假定布局xml在资源 ...

  5. 认识soui4js(第2篇):代码编辑及调试

    开始 假定您使用向导在d:\jsdemo目录创建一个工程,您也已经安装好了vscode, 那么您应该可以看到下面的界面效果: 工程生成后,主要包含一个soui资源包及一个main.js 要运行这个程序 ...

  6. 从理房间到移动零:一道考察数组操作的经典题目|LeetCode 283 移动零

    LeetCode 283 移动零 点此看全部题解 LeetCode必刷100题:一份来自面试官的算法地图(题解持续更新中) 生活中的算法 你有没有整理过房间?常常会发现一些要丢掉的东西,但又不想立刻处 ...

  7. 提升质量:利用Coverage分析Python Web项目的测试覆盖

    提升质量:利用Coverage分析Python Web项目的测试覆盖 鉴于不同框架的运行机制各有差异,当利用Coverage工具对Python Web项目的测试覆盖率进行分析时,必须采取针对性的方法来 ...

  8. Hetao P1169 点集 题解 [ 黄 ][ 线性dp ]

    点集 题解 一道非常傻逼,非常傻逼的暴力题,一点都不优雅,这能放普及 T4 真是开了眼了. 本题难点主要就是在时间复杂度的计算上,只要算对了并且有勇气去打就能 AC . 首先发现能形成一个点集,当且仅 ...

  9. Luogu P4425 转盘 题解 [ 黑 ] [ 线段树 ] [ 贪心 ] [ 递归 ]

    转盘:蒟蒻的第一道黑,这题是贪心和线段树递归合并的综合题. 贪心 破环成链的 trick 自然不用多说. 首先观察题目,很容易发现一个性质:只走一圈的方案一定最优.这个很容易证,因为再绕一圈回来标记前 ...

  10. Typora+PicGo+Gitee图床

    Typora+PicGo+Gitee图床 介绍 Typora:一个用于写文章的Markdown 编辑器,Typora 没有采用源代码和预览双栏显示的方式,而是采用所见即所得的编辑方式,实现了即时预览的 ...