hgame2025-Crypto小记
hgame2025-Crypto小记
发现积压在文件夹有一段时间了。整理一下发出来。
suprimeRSA
task.py
from Crypto.Util.number import *
import random
from sympy import prime
FLAG=b'hgame{xxxxxxxxxxxxxxxxxx}'
e=0x10001
def primorial(num):
print(num)
result = 1
for i in range(1, num + 1):
result *= prime(i)
return result
M=primorial(random.choice([39,71,126]))
def gen_key():
while True:
k = getPrime(random.randint(20,40))
a = getPrime(random.randint(20,60))
p = k * M + pow(e, a, M)
if isPrime(p):
return p
p,q=gen_key(),gen_key()
n=p*q
m=bytes_to_long(FLAG)
enc=pow(m,e,n)
print(n.bit_length())
print(f'{n=}')
print(f'{enc=}')
"""
n=787190064146025392337631797277972559696758830083248285626115725258876808514690830730702705056550628756290183000265129340257928314614351263713241
enc=365164788284364079752299551355267634718233656769290285760796137651769990253028664857272749598268110892426683253579840758552222893644373690398408
"""
其实是CVE-2017-15361
介绍这个攻击的友联:ROCA攻击——CVE-2017-15361 | crumbling's secret room
GKCTF2020_Crypto_复现_仿射密码在线解密器-CSDN博客之前就出现过,网上有exp
exp
from sage.all import *
from tqdm import tqdm
def solve(M, n, a, m):
# I need to import it in the function otherwise multiprocessing doesn't find it in its context
from sage_functions import coppersmith_howgrave_univariate
base = int(65537)
# the known part of p: 65537^a * M^-1 (mod N)
known = int(pow(base, a, M) * inverse_mod(M, n))
# Create the polynom f(x)
F = PolynomialRing(Zmod(n), implementation='NTL', names=('x',))
(x,) = F._first_ngens(1)
pol = x + known
beta = 0.1
t = m+1
# Upper bound for the small root x0
XX = floor(2 * n**0.5 / M)
# Find a small root (x0 = k) using Coppersmith's algorithm
roots = coppersmith_howgrave_univariate(pol, n, beta, m, t, XX)
# There will be no roots for an incorrect guess of a.
for k in roots:
# reconstruct p from the recovered k
p = int(k*M + pow(base, a, M))
if n%p == 0:
return p, n//p
def roca(n):
keySize = n.bit_length()
if keySize <= 960:
M_prime = 0x1b3e6c9433a7735fa5fc479ffe4027e13bea
m = 5
elif 992 <= keySize <= 1952:
M_prime = 0x24683144f41188c2b1d6a217f81f12888e4e6513c43f3f60e72af8bd9728807483425d1e
m = 4
print("Have you several days/months to spend on this ?")
elif 1984 <= keySize <= 3936:
M_prime = 0x16928dc3e47b44daf289a60e80e1fc6bd7648d7ef60d1890f3e0a9455efe0abdb7a748131413cebd2e36a76a355c1b664be462e115ac330f9c13344f8f3d1034a02c23396e6
m = 7
print("You'll change computer before this scripts ends...")
elif 3968 <= keySize <= 4096:
print("Just no.")
return None
else:
print("Invalid key size: {}".format(keySize))
return None
a3 = Zmod(M_prime)(n).log(65537)
order = Zmod(M_prime)(65537).multiplicative_order()
inf = a3 // 2
sup = (a3 + order) // 2
# Search 10 000 values at a time, using multiprocess
# too big chunks is slower, too small chunks also
chunk_size = 10000
for inf_a in tqdm(range(inf, sup, chunk_size)):
# create an array with the parameter for the solve function
inputs = [((M_prime, n, a, m), {}) for a in range(inf_a, inf_a+chunk_size)]
# the sage builtin multiprocessing stuff
from sage.parallel.multiprocessing_sage import parallel_iter
from multiprocessing import cpu_count
for k, val in parallel_iter(cpu_count(), solve, inputs):
if val:
p = val[0]
q = val[1]
print("found factorization:\np={}\nq={}".format(p, q))
return val
from sage.all_cmdline import *
def coppersmith_howgrave_univariate(pol, modulus, beta, mm, tt, XX):
"""
Taken from https://github.com/mimoo/RSA-and-LLL-attacks/blob/master/coppersmith.sage
Coppersmith revisited by Howgrave-Graham
finds a solution if:
* b|modulus, b >= modulus^beta , 0 < beta <= 1
* |x| < XX
More tunable than sage's builtin coppersmith method, pol.small_roots()
"""
#
# init
#
dd = pol.degree()
nn = dd * mm + tt
#
# checks
#
if not 0 < beta <= 1:
raise ValueError("beta should belongs in [0, 1]")
if not pol.is_monic():
raise ArithmeticError("Polynomial must be monic.")
#
# calculate bounds and display them
#
"""
* we want to find g(x) such that ||g(xX)|| <= b^m / sqrt(n)
* we know LLL will give us a short vector v such that:
||v|| <= 2^((n - 1)/4) * det(L)^(1/n)
* we will use that vector as a coefficient vector for our g(x)
* so we want to satisfy:
2^((n - 1)/4) * det(L)^(1/n) < N^(beta*m) / sqrt(n)
so we can obtain ||v|| < N^(beta*m) / sqrt(n) <= b^m / sqrt(n)
(it's important to use N because we might not know b)
"""
#
# Coppersmith revisited algo for univariate
#
# change ring of pol and x
polZ = pol.change_ring(ZZ)
x = polZ.parent().gen()
# compute polynomials
gg = []
for ii in range(mm):
for jj in range(dd):
gg.append((x * XX) ** jj * modulus ** (mm - ii) * polZ(x * XX) ** ii)
for ii in range(tt):
gg.append((x * XX) ** ii * polZ(x * XX) ** mm)
# construct lattice B
BB = Matrix(ZZ, nn)
for ii in range(nn):
for jj in range(ii + 1):
BB[ii, jj] = gg[ii][jj]
BB = BB.LLL()
# transform shortest vector in polynomial
new_pol = 0
for ii in range(nn):
new_pol += x ** ii * BB[0, ii] / XX ** ii
# factor polynomial
potential_roots = new_pol.roots()
# test roots
roots = []
for root in potential_roots:
if root[0].is_integer():
result = polZ(ZZ(root[0]))
if gcd(modulus, result) >= modulus ** beta:
roots.append(ZZ(root[0]))
return roots
if __name__ == "__main__":
n = 787190064146025392337631797277972559696758830083248285626115725258876808514690830730702705056550628756290183000265129340257928314614351263713241
print("Starting factorization...")
#p,q = roca(n)
p=954455861490902893457047257515590051179337979243488068132318878264162627
q=824752716083066619280674937934149242011126804999047155998788143116757683
enc=365164788284364079752299551355267634718233656769290285760796137651769990253028664857272749598268110892426683253579840758552222893644373690398408
phi=(p-1)*(q-1)
e = 65537
d = gmpy2.invert(e,phi)
m = pow(enc,d,n)
print(libnum.n2s(int(m)))
Starting factorization...
b'hgame{ROCA_ROCK_and_ROll!}'
Sieve
#sage
from Crypto.Util.number import bytes_to_long
from sympy import nextprime
FLAG = b'hgame{xxxxxxxxxxxxxxxxxxxxxx}'
m = bytes_to_long(FLAG)
def trick(k):
if k > 1:
mul = prod(range(1,k))
if k - mul % k - 1 == 0:
return euler_phi(k) + trick(k-1) + 1
else:
return euler_phi(k) + trick(k-1)
else:
return 1
e = 65537
p = q = nextprime(trick(e^2//6)<<128)
n = p * q
enc = pow(m,e,n)
print(f'{enc=}')
#enc=2449294097474714136530140099784592732766444481665278038069484466665506153967851063209402336025065476172617376546
它本质上是求前n项素数和还有前n项欧拉函数和
前n项素数可以用sagemath内置函数prime_pi()函数。至于求欧拉函数我调教deepseek不出来,抄一下官方WP的。
e = 65537
limit = e**2 // 6
e = 65537
x=prime_pi(e^2//6)
#print(x)
#37030583
def sieve_of_eratosthenes(limit):
is_prime = [True] * (limit + 1)
p = 2
while p * p <= limit:
if is_prime[p]:
for i in range(p*p, limit+1, p):
is_prime[i] = False
p += 1
primes = [p for p in range(2, limit+1) if is_prime[p]]
return primes
def compute_phi_and_prefix_sum(n):
primes = sieve_of_eratosthenes(n)
phi = list(range(n + 1)) # phi[0]=0, phi[1]=1,...phi[i]=i
for p in primes:
if p < 2:
continue
for multiple in range(p, n+1, p):
phi[multiple] -= phi[multiple] // p
# 计算前缀和
pre_s = [0] * (n + 1)
current_sum = 0
for i in range(n + 1):
current_sum += phi[i]
pre_s[i] = current_sum
return phi, pre_s
class EulerSumSolver:
def __init__(self, m=10**6):
self.m = m
self.phi, self.pre_s = compute_phi_and_prefix_sum(m) # 调用新函数
self.cache = {}
def S(self, n):
if n <= self.m:
return self.pre_s[n]
if n in self.cache:
return self.cache[n]
res = n * (n + 1) // 2
v = int(n**0.5)
sum1 = 0
for i in range(2, v + 1):
sum1 += self.S(n // i)
u = n // (v + 1)
sum2 = 0
for k in range(1, u + 1):
sum2 += self.S(k) * (n // k - n // (k + 1))
res -= (sum1 + sum2)
self.cache[n] = res
return res
solver = EulerSumSolver(m=10**6)
print(solver.S(65537**2 // 6)) # 注意修正变量名拼写slover->solver
#155763335410704472
根据公式
\]
所以我们每次只需要\(\phi(multiple) =\phi(multiple) -\frac{\phi(multiple)}{p}\)
然后我们累加欧拉函数值,得到前缀和。
接着它的递归公式是
S(n) = \frac{n(n+1)}{2} - \sum_{i=2}^{v} S\left(\left\lfloor \frac{n}{i} \right\rfloor\right) - \sum_{k=1}^{u} S(k) \left(\left\lfloor \frac{n}{k}\right\rfloor - \left\lfloor \frac{n}{k+1}\right\rfloor\right)
\end{equation}
\]
HGame CTF 2025 week1 wp这个师傅的版本简单些
ezBag
task.py
from Crypto.Util.number import *
import random
from Crypto.Cipher import AES
import hashlib
from Crypto.Util.Padding import pad
from secrets import flag
list = []
bag = []
p=random.getrandbits(64)
assert len(bin(p)[2:])==64
for i in range(4):
t = p
a=[getPrime(32) for _ in range(64)]
b=0
for i in a:
temp=t%2
b+=temp*i
t=t>>1
list.append(a)
bag.append(b)
print(f'list={list}')
print(f'bag={bag}')
key = hashlib.sha256(str(p).encode()).digest()
cipher = AES.new(key, AES.MODE_ECB)
flag = pad(flag,16)
ciphertext = cipher.encrypt(flag)
print(f"ciphertext={ciphertext}")
背包密码问题,但是套常规脚本不彳亍。
2 & 0 & \dots & 0 & a[0][63] & a[1][63] & a[2][63] & a[3][63] \\
0 & 2 & \dots & 0 & a[0][62] & a[1][62] & a[2][62] & a[3][62] \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & \dots & 2 & a[0][0] & a[1][0] & a[2][0] & a[3][0] \\
1 & 1 & \dots & 1 & b[0] & b[1] & b[2] & b[3]
\end{pmatrix}
\]
import hashlib
from Crypto.Util.number import *
from Crypto.Cipher import AES
list=[[2826962231, 3385780583, 3492076631, 3387360133, 2955228863, 2289302839, 2243420737, 4129435549, 4249730059, 3553886213, 3506411549, 3658342997, 3701237861, 4279828309, 2791229339, 4234587439, 3870221273, 2989000187, 2638446521, 3589355327, 3480013811, 3581260537, 2347978027, 3160283047, 2416622491, 2349924443, 3505689469, 2641360481, 3832581799, 2977968451, 4014818999, 3989322037, 4129732829, 2339590901, 2342044303, 3001936603, 2280479471, 3957883273, 3883572877, 3337404269, 2665725899, 3705443933, 2588458577, 4003429009, 2251498177, 2781146657, 2654566039, 2426941147, 2266273523, 3210546259, 4225393481, 2304357101, 2707182253, 2552285221, 2337482071, 3096745679, 2391352387, 2437693507, 3004289807, 3857153537, 3278380013, 3953239151, 3486836107, 4053147071], [2241199309, 3658417261, 3032816659, 3069112363, 4279647403, 3244237531, 2683855087, 2980525657, 3519354793, 3290544091, 2939387147, 3669562427, 2985644621, 2961261073, 2403815549, 3737348917, 2672190887, 2363609431, 3342906361, 3298900981, 3874372373, 4287595129, 2154181787, 3475235893, 2223142793, 2871366073, 3443274743, 3162062369, 2260958543, 3814269959, 2429223151, 3363270901, 2623150861, 2424081661, 2533866931, 4087230569, 2937330469, 3846105271, 3805499729, 4188683131, 2804029297, 2707569353, 4099160981, 3491097719, 3917272979, 2888646377, 3277908071, 2892072971, 2817846821, 2453222423, 3023690689, 3533440091, 3737441353, 3941979749, 2903000761, 3845768239, 2986446259, 3630291517, 3494430073, 2199813137, 2199875113, 3794307871, 2249222681, 2797072793], [4263404657, 3176466407, 3364259291, 4201329877, 3092993861, 2771210963, 3662055773, 3124386037, 2719229677, 3049601453, 2441740487, 3404893109, 3327463897, 3742132553, 2833749769, 2661740833, 3676735241, 2612560213, 3863890813, 3792138377, 3317100499, 2967600989, 2256580343, 2471417173, 2855972923, 2335151887, 3942865523, 2521523309, 3183574087, 2956241693, 2969535607, 2867142053, 2792698229, 3058509043, 3359416111, 3375802039, 2859136043, 3453019013, 3817650721, 2357302273, 3522135839, 2997389687, 3344465713, 2223415097, 2327459153, 3383532121, 3960285331, 3287780827, 4227379109, 3679756219, 2501304959, 4184540251, 3918238627, 3253307467, 3543627671, 3975361669, 3910013423, 3283337633, 2796578957, 2724872291, 2876476727, 4095420767, 3011805113, 2620098961], [2844773681, 3852689429, 4187117513, 3608448149, 2782221329, 4100198897, 3705084667, 2753126641, 3477472717, 3202664393, 3422548799, 3078632299, 3685474021, 3707208223, 2626532549, 3444664807, 4207188437, 3422586733, 2573008943, 2992551343, 3465105079, 4260210347, 3108329821, 3488033819, 4092543859, 4184505881, 3742701763, 3957436129, 4275123371, 3307261673, 2871806527, 3307283633, 2813167853, 2319911773, 3454612333, 4199830417, 3309047869, 2506520867, 3260706133, 2969837513, 4056392609, 3819612583, 3520501211, 2949984967, 4234928149, 2690359687, 3052841873, 4196264491, 3493099081, 3774594497, 4283835373, 2753384371, 2215041107, 4054564757, 4074850229, 2936529709, 2399732833, 3078232933, 2922467927, 3832061581, 3871240591, 3526620683, 2304071411, 3679560821]]
bag=[123342809734, 118191282440, 119799979406, 128273451872]
ciphertext=b'\x1d6\xcc}\x07\xfa7G\xbd\x01\xf0P4^Q"\x85\x9f\xac\x98\x8f#\xb2\x12\xf4+\x05`\x80\x1a\xfa !\x9b\xa5\xc7g\xa8b\x89\x93\x1e\xedz\xd2M;\xa2'
L=matrix(ZZ,65,68)
for i in range(64):
L[i,i]=2
L[i,-1]=list[3][-i-1]
L[i,-2]=list[2][-i-1]
L[i,-3]=list[1][-i-1]
L[i,-4]=list[0][-i-1]
L[-1,:]=1
L[-1,-1]=bag[3]
L[-1,-2]=bag[2]
L[-1,-3]=bag[1]
L[-1,-4]=bag[0]
x=L.BKZ()
print(x[0])
p=''
for i in x[0][:64]:
if i==x[0][0]:
p+='1'
else:
p+='0'
p=int(p,2)
key = hashlib.sha256(str(p).encode()).digest()
cipher = AES.new(key, AES.MODE_ECB)
flag = cipher.decrypt(ciphertext)
print(flag)
这个格为什么这样构造的,有没有师傅懂原理。不过从表面上看,list和bag都是二维数组,应该可以猜测是这样构造的吧。
Intergalactic Bound
task.py
from Crypto.Util.number import *
from Crypto.Cipher import AES
from Crypto.Util.Padding import pad
from random import randint
import hashlib
from secrets import flag
def add_THCurve(P, Q):
if P == (0, 0):
return Q
if Q == (0, 0):
return P
x1, y1 = P
x2, y2 = Q
x3 = (x1 - y1 ** 2 * x2 * y2) * pow(a * x1 * y1 * x2 ** 2 - y2, -1, p) % p
y3 = (y1 * y2 ** 2 - a * x1 ** 2 * x2) * pow(a * x1 * y1 * x2 ** 2 - y2, -1, p) % p
return x3, y3
def mul_THCurve(n, P):
R = (0, 0)
while n > 0:
if n % 2 == 1:
R = add_THCurve(R, P)
P = add_THCurve(P, P)
n = n // 2
return R
p = getPrime(96)
a = randint(1, p)
G = (randint(1,p), randint(1,p))
d = (a*G[0]^3+G[1]^3+1)%p*inverse(G[0]*G[1],p)%p
x = randint(1, p)
Q = mul_THCurve(x, G)
print(f"p = {p}")
print(f"G = {G}")
print(f"Q = {Q}")
key = hashlib.sha256(str(x).encode()).digest()
cipher = AES.new(key, AES.MODE_ECB)
flag = pad(flag,16)
ciphertext = cipher.encrypt(flag)
print(f"ciphertext={ciphertext}")
"""
p = 55099055368053948610276786301
G = (19663446762962927633037926740, 35074412430915656071777015320)
Q = (26805137673536635825884330180, 26376833112609309475951186883)
ciphertext=b"k\xe8\xbe\x94\x9e\xfc\xe2\x9e\x97\xe5\xf3\x04'\x8f\xb2\x01T\x06\x88\x04\xeb3Jl\xdd Pk$\x00:\xf5"
"""
一眼非常眼熟,因为刚好在研究curve相关问题。这其实是羊城杯2024的两道curve题目结合改编而来。
附上链接:https://blog.csdn.net/XiongSiqi_blog/article/details/141638136
我采用上面博客的方法,没有使用扭曲曲线惯用方法——映射到Weierstrass
本题就是先用两个点算出a和d。然后后面使用Pohlig_Hellman方法的时候,套用的博客脚本要修改一下,就是它这个prime最后一位有没有去掉的问题,羊城杯那题中,它是去掉的:
primes = [factors[i] ^ exponents[i] for i in range(len(factors))][:-1]
但是这题不用去掉,具体原因我还要探究一下。我是偶然间把它去了发现才可以解
exp
from Crypto.Util.number import *
from Crypto.Cipher import AES
from Crypto.Util.Padding import unpad
import hashlib
ciphertext=b"k\xe8\xbe\x94\x9e\xfc\xe2\x9e\x97\xe5\xf3\x04'\x8f\xb2\x01T\x06\x88\x04\xeb3Jl\xdd Pk$\x00:\xf5"
a=39081810733380615260725035189
p = 55099055368053948610276786301
P = (19663446762962927633037926740, 35074412430915656071777015320)
Q = (26805137673536635825884330180, 26376833112609309475951186883)
d = (a * P[0] ** 3 + P[1] ** 3 + 1) * inverse(P[0] * P[1], p) % p
# construct ECC to get a solution of 2X^3+Y^3+Z^3=dXYZ
R.<x,y,z> = Zmod(p)[]
cubic = a* x^3 + y^3 + z^3 - d*x*y*z
E = EllipticCurve_from_cubic(cubic,morphism=True)
P = E(P)
Q = E(Q)
P_ord = P.order()
def Pohlig_Hellman(n,P,Q):
factors, exponents = zip(*factor(n))
primes = [factors[i] ^ exponents[i] for i in range(len(factors))]
print(primes)
dlogs = []
for fac in primes:
t = int(int(P.order()) // int(fac))
dlog = discrete_log(t*Q,t*P,operation="+")
dlogs += [dlog]
print("factor: "+str(fac)+", Discrete Log: "+str(dlog)) #calculates discrete logarithm for each prime order
num2 = crt(dlogs,primes)
return num2
num2 = Pohlig_Hellman(P_ord,P,Q)
print(num2)
key = hashlib.sha256(str(num2).encode()).digest()
cipher = AES.new(key, AES.MODE_ECB)
flag = unpad(cipher.decrypt(ciphertext), 16).decode()
print(f"Flag: {flag}")
#Flag: hgame{N0th1ng_bu7_up_Up_UP!}
Ancient Recall
task.py
import random
Major_Arcana = ["The Fool", "The Magician", "The High Priestess","The Empress", "The Emperor", "The Hierophant","The Lovers", "The Chariot", "Strength","The Hermit", "Wheel of Fortune", "Justice","The Hanged Man", "Death", "Temperance","The Devil", "The Tower", "The Star","The Moon", "The Sun", "Judgement","The World"]
wands = ["Ace of Wands", "Two of Wands", "Three of Wands", "Four of Wands", "Five of Wands", "Six of Wands", "Seven of Wands", "Eight of Wands", "Nine of Wands", "Ten of Wands", "Page of Wands", "Knight of Wands", "Queen of Wands", "King of Wands"]
cups = ["Ace of Cups", "Two of Cups", "Three of Cups", "Four of Cups", "Five of Cups", "Six of Cups", "Seven of Cups", "Eight of Cups", "Nine of Cups", "Ten of Cups", "Page of Cups", "Knight of Cups", "Queen of Cups", "King of Cups"]
swords = ["Ace of Swords", "Two of Swords", "Three of Swords", "Four of Swords", "Five of Swords", "Six of Swords", "Seven of Swords", "Eight of Swords", "Nine of Swords", "Ten of Swords", "Page of Swords", "Knight of Swords", "Queen of Swords", "King of Swords"]
pentacles = ["Ace of Pentacles", "Two of Pentacles", "Three of Pentacles", "Four of Pentacles", "Five of Pentacles", "Six of Pentacles", "Seven of Pentacles", "Eight of Pentacles", "Nine of Pentacles", "Ten of Pentacles", "Page of Pentacles", "Knight of Pentacles", "Queen of Pentacles", "King of Pentacles"]
Minor_Arcana = wands + cups + swords + pentacles
tarot = Major_Arcana + Minor_Arcana
reversals = [0,-1]
Value = []
cards = []
YOUR_initial_FATE = []
while len(YOUR_initial_FATE)<5:
card = random.choice(tarot)
if card not in cards:
cards.append(card)
if card in Major_Arcana:
k = random.choice(reversals)
Value.append(tarot.index(card)^k)
if k == -1:
YOUR_initial_FATE.append("re-"+card)
else:
YOUR_initial_FATE.append(card)
else:
Value.append(tarot.index(card))
YOUR_initial_FATE.append(card)
else:
continue
print("Oops!lets reverse 1T!")
FLAG=("hgame{"+"&".join(YOUR_initial_FATE)+"}").replace(" ","_")
YOUR_final_Value = Value
def Fortune_wheel(FATE):
FATEd = [FATE[i]+FATE[(i+1)%5] for i in range(len(FATE))]
return FATEd
for i in range(250):
YOUR_final_Value = Fortune_wheel(YOUR_final_Value)
print(YOUR_final_Value)
YOUR_final_FATE = []
for i in YOUR_final_Value:
YOUR_final_FATE.append(tarot[i%78])
print("Your destiny changed!\n",",".join(YOUR_final_FATE))
print("oh,now you GET th3 GOOd lU>k,^^")
"""
Oops!lets reverse 1T!
[2532951952066291774890498369114195917240794704918210520571067085311474675019, 2532951952066291774890327666074100357898023013105443178881294700381509795270, 2532951952066291774890554459287276604903130315859258544173068376967072335730, 2532951952066291774890865328241532885391510162611534514014409174284299139015, 2532951952066291774890830662608134156017946376309989934175833913921142609334]
Your destiny changed!
Eight of Cups,Ace of Cups,Strength,The Chariot,Five of Swords
oh,now you GET th3 GOOd lU>k,^^
"""
直接使用deepseek R1秒杀?
exp
Major_Arcana = ["The Fool", "The Magician", "The High Priestess","The Empress", "The Emperor", "The Hierophant","The Lovers", "The Chariot", "Strength","The Hermit", "Wheel of Fortune", "Justice","The Hanged Man", "Death", "Temperance","The Devil", "The Tower", "The Star","The Moon", "The Sun", "Judgement","The World"]
wands = ["Ace of Wands", "Two of Wands", "Three of Wands", "Four of Wands", "Five of Wands", "Six of Wands", "Seven of Wands", "Eight of Wands", "Nine of Wands", "Ten of Wands", "Page of Wands", "Knight of Wands", "Queen of Wands", "King of Wands"]
cups = ["Ace of Cups", "Two of Cups", "Three of Cups", "Four of Cups", "Five of Cups", "Six of Cups", "Seven of Cups", "Eight of Cups", "Nine of Cups", "Ten of Cups", "Page of Cups", "Knight of Cups", "Queen of Cups", "King of Cups"]
swords = ["Ace of Swords", "Two of Swords", "Three of Swords", "Four of Swords", "Five of Swords", "Six of Swords", "Seven of Swords", "Eight of Swords", "Nine of Swords", "Ten of Swords", "Page of Swords", "Knight of Swords", "Queen of Swords", "King of Swords"]
pentacles = ["Ace of Pentacles", "Two of Pentacles", "Three of Pentacles", "Four of Pentacles", "Five of Pentacles", "Six of Pentacles", "Seven of Pentacles", "Eight of Pentacles", "Nine of Pentacles", "Ten of Pentacles", "Page of Pentacles", "Knight of Pentacles", "Queen of Pentacles", "King of Pentacles"]
Minor_Arcana = wands + cups + swords + pentacles
tarot = Major_Arcana + Minor_Arcana
final_values = [
2532951952066291774890498369114195917240794704918210520571067085311474675019,
2532951952066291774890327666074100357898023013105443178881294700381509795270,
2532951952066291774890554459287276604903130315859258544173068376967072335730,
2532951952066291774890865328241532885391510162611534514014409174284299139015,
2532951952066291774890830662608134156017946376309989934175833913921142609334
]
def reverse_fortune_wheel(current):
v0 = (current[0] + current[4] - current[1] - current[3] + current[2]) // 2
v1 = current[0] - v0
v2 = current[1] - v1
v3 = current[2] - v2
v4 = current[3] - v3
assert v4 + v0 == current[4], "Reverse step failed"
return [v0, v1, v2, v3, v4]
current = final_values.copy()
for _ in range(250):
current = reverse_fortune_wheel(current)
initial_values = current
def get_card_name(value):
k_reversed = value ^ -1
if 0 <= k_reversed < len(Major_Arcana):
return f"re-{Major_Arcana[k_reversed]}"
if 0 <= value < len(Major_Arcana):
return Major_Arcana[value]
index = value % len(tarot)
return tarot[index]
cards = []
for v in initial_values:
card = get_card_name(v)
card = card.replace(" ", "_")
cards.append(card)
flag = "hgame{" + "&".join(cards) + "}"
print(flag)
#hgame{re-The_Moon&re-The_Sun&Judgement&re-Temperance&Six_of_Cups}
SPiCa
task.py
from Crypto.Util.number import getPrime, long_to_bytes,bytes_to_long
from secrets import flag
from sage.all import *
def derive_M(n):
iota=0.035
Mbits=int(2 * iota * n^2 + n * log(n,2))
M = random_prime(2^Mbits, proof = False, lbound = 2^(Mbits - 1))
return Integer(M)
m = bytes_to_long(flag).bit_length()
n = 70
p = derive_M(n)
F = GF(p)
x = random_matrix(F, 1, n)
A = random_matrix(ZZ, n, m, x=0, y=2)
A[randint(0, n-1)] = vector(ZZ, list(bin(bytes_to_long(flag))[2:]))
h = x*A
with open("data.txt", "w") as file:
file.write(str(m) + "\n")
file.write(str(p) + "\n")
for item in h:
file.write(str(item) + "\n")
HSSP问题,这题其实考过,y011d4.log
一模一样的,这题就是x是\(1*n\)的随机矩阵,A是\(n*m\)的随机矩阵,h=x*A
ctf-writeups/2022/zer0ptsctf/karen/solutions/solver.sage at main · roadicing/ctf-writeups · GitHub解密脚本在这
用\(h\)构造格基,LLL找到m−n个短向量ui
用ui构造格\(L_x^{⊥}\),用\(Lx^{⊥}\)找\(L_x^{⊥}\)的正交补\(L_x^{⊥}\)ˉ(可以看作是和\(L_x\)同一个空间,但基不是xi\pmb{x}_ixxi)
对\(L_x^{⊥}\)ˉ使用LLL恢复\(x_{i}\)
exp
#sage
from Crypto.Util.number import long_to_bytes
n = 70
m = 247
p = 24727704801291912268835129736340977567569865784366882566681759917843647658060231409536848349518003784121914409876944135933654762801696486121844572452922377222301017649192408619831637530961997845860817966791811403512683444831050730277
h = (...)
# https://eprint.iacr.org/2020/461.pdf
# https://pastebin.com/raw/ZFk1qjfP
def orthoLattice(b,x0):
m = b.length()
M = Matrix(ZZ, m, m)
for i in range(1, m):
M[i, i] = 1
M[1:m, 0] = -b[1: m] * inverse_mod(b[0], x0)
M[0,0] = x0
for i in range(1, m):
M[i, 0] = mod(M[i, 0], x0)
return M
def allones(v):
if len([vj for vj in v if vj in [0, 1]]) == len(v):
return v
if len([vj for vj in v if vj in [0, -1]]) == len(v):
return -v
return None
def recoverBinary(M5):
lv = [allones(vi) for vi in M5 if allones(vi)]
n = M5.nrows()
for v in lv:
for i in range(n):
nv = allones(M5[i] - v)
if nv and nv not in lv:
lv.append(nv)
nv = allones(M5[i] + v)
if nv and nv not in lv:
lv.append(nv)
return Matrix(lv)
def allpmones(v):
return len([vj for vj in v if vj in [-1, 0, 1]]) == len(v)
def kernelLLL(M):
n = M.nrows()
m = M.ncols()
if m < 2 * n:
return M.right_kernel().matrix()
K = 2^(m // 2) * M.height()
MB = Matrix(ZZ, m + n, m)
MB[:n] = K * M
MB[n:] = identity_matrix(m)
MB2 = MB.T.LLL().T
assert MB2[:n, :m - n] == 0
Ke = MB2[n:, :m - n].T
return Ke
def NSattack(n, m, p, h):
iota = 0.035
nx0 = int(2 * iota * n^2 + n * log(n, 2))
x0 = p
b = vector(h)
M = orthoLattice(b, x0)
M2 = M.LLL()
MOrtho = M2[:m - n]
ke = kernelLLL(MOrtho)
if n > 170:
return
beta = 2
while beta < n:
if beta == 2:
M5 = ke.LLL()
else:
M5 = M5.BKZ(block_size = beta)
if len([True for v in M5 if allpmones(v)]) == n:
break
if beta == 2:
beta = 10
else:
beta += 10
MB = recoverBinary(M5)
return MB
MB = NSattack(n, m, p, h)
for r in MB:
res = long_to_bytes(int(''.join(map(str, r.list())), 2))
if res.startswith(b"hgame{"):
FLAG = res
print(FLAG)
hgame2025-Crypto小记的更多相关文章
- linux 下cmake 编译 ,调用,调试 poco 1.6.0 小记
上篇文章 小记了: 关于 Poco::TCPServer框架 (windows 下使用的是 select模型) 学习笔记. http://www.cnblogs.com/bleachli/p/4352 ...
- JavaScript小记
JavaScript小记 1. 简介 1. 语言描述 JavaScript 是一门跨平台.面向对象的弱类型动态脚本编程语言 JavaScript 是一门基于原型.函数先行的语言 JavaScript ...
- [原]Paste.deploy 与 WSGI, keystone 小记
Paste.deploy 与 WSGI, keystone 小记 名词解释: Paste.deploy 是一个WSGI工具包,用于更方便的管理WSGI应用, 可以通过配置文件,将WSGI应用加载起来. ...
- MySql 小记
MySql 简单 小记 以备查看 1.sql概述 1.什么是sql? 2.sql发展过程? 3.sql标准与方言的关系? 4.常用数据库? 5.MySql数据库安装? 2.关键概念 表结构----- ...
- Git小记
Git简~介 Git是一个分布式版本控制系统,其他的版本控制系统我只用过SVN,但用的时间不长.大家都知道,分布式的好处多多,而且分布式已经包含了集中式的几乎所有功能.Linus创造Git的传奇经历就 ...
- 广州PostgreSQL用户会技术交流会小记 2015-9-19
广州PostgreSQL用户会技术交流会小记 2015-9-19 今天去了广州PostgreSQL用户会组织的技术交流会 分别有两个session 第一个讲师介绍了他公司使用PostgreSQL-X2 ...
- 东哥读书小记 之 《MacTalk人生元编程》
一直以来的自我感觉:自己是个记性偏弱的人.反正从小读书就喜欢做笔记(可自己的字写得巨丑无比,尼玛不科学呀),抄书这事儿真的就常发生俺的身上. 因为那时经常要背诵课文之类,反正为了怕自己忘记, ...
- Paypal支付小记
Paypal支付小记 *:first-child { margin-top: 0 !important; } body>*:last-child { margin-bottom: 0 !impo ...
- javax.crypto.BadPaddingException: Given final block not properly padded 解决方法
下面的 Des 加密解密代码,在加密时正常,但是在解密是抛出错误: javax.crypto.BadPaddingException: Given final block not properly p ...
- 使用crypto模块实现md5加密功能(解决中文加密前后端不一致的问题)
正常情况下使用md5加密 var crypto = require('crypto'); var md5Sign = function (data) { var md5 = crypto.create ...
随机推荐
- Timestamp和LocalDateTime 互转
jdk:1.81.Timestamp 转 LocalDateTime Timestamp time = Timestamp.from(Instant.now());LocalDateTime loca ...
- 『玩转Streamlit』--上传下载文件
在Web应用中,文件的上传下载是交互中不可缺少的功能. 因为在业务功能中,一般不会只有文字的交互,资料或图片的获取和分发是很常见的需求. 比如,文件上传可让用户向服务器提交数据,如上传图片分享生活.提 ...
- NetCore开源项目,适合新手学习
VerEasy.Core 介绍 这是一个基于 .NET Core 的易开发的框架,附 vue3前端框架.提供了一个高效可扩展的API程序. 支持 JWT 认证.数据库操作.日志记录.异步处理等特性,能 ...
- [转]分享几款微软官方Office卸载工具与使用方法
更换Office版本时,需要先卸载旧版Office,如果是卸载普通软件,我们只需在"控制面板"里点击"卸载"就能轻松实现,但这种方法对卸载Office 可能无效 ...
- Datawhale AI 夏令营-天池Better Synth多模态大模型数据合成挑战赛-task3持续上分(更新中)
在大数据.大模型时代,随着大模型发展,互联网数据渐尽且需大量处理标注,为新模型训练高效合成优质数据成为新兴问题."天池 Better Synth - 多模态大模型数据合成挑战赛"应 ...
- sshd 启动失败
解决方法 yum remove openssh yum install openssh openssh-server openssh-clients systemctl start sshd syst ...
- C# Winform cilent call SignalR
一.SignalR是什么 Asp.net SignalR是微软为实现实时通信的一个类库.一般情况下,SignalR会使用JavaScript的长轮询(long polling)的方式来实现客户端和服务 ...
- SpringBoot 集成腾讯云(对象存储、短信)
https://developer.aliyun.com/article/831473 https://blog.csdn.net/weixin_45626288/article/details/11 ...
- MySQL安装及基本使用教程
yanzilove win10下安装配置mysql环境 一.下载从https://dev.mysql.com/downloads/mysql/5.1.html#downloads下载zip包,这里 ...
- ctfshow--web4 include日志注入
这题和第三题有点不一样,这题的把php 和 data 都过滤掉了 一旦我们输入这个关键字就页面就会报error 一开始是没啥头绪的,后面上网查了一下,可以通过日志记录来注入代码 对于Apache,日志 ...