洛谷 P3268 [JLOI2016]圆的异或并

题目描述

在平面上有两两不相交的\(n\)个圆,即其关系只有相离和包含。求这些圆的异或面积并。

异或面积并为:当一片区域被奇数个圆包含则计算其面积,否则不计算。

输出所有圆的异或面积并除以\(\pi\)的结果。

\(n\le 200000\)。

Solution

前置知识:扫描线,set。

可以发现,由于圆是不相交的,那么这种包含关系可以看作是一棵森林(许多有根树构成的图)。

比如像这个几个圆

可以变成

设每个根的深度为1,那么深度为奇数的节点的面积是需要加上的,深度为偶数的节点的面积是需要减去的。

\[ans=\sum_{i=1}^nr_i^2\times(-1)^{dep_i+1}
\]

同扫描线的思想,我们模拟出有一条垂直于\(x\)轴的直线从左向右移动。

  • 当其与某个圆开始触碰到的时候,就将这个圆拆分为上半圆和下半圆插入set中。这个set是按照圆的高度排序的。由于保证了圆和圆之间不相交,所以可以直接计算扫描线与半圆的交点作为关键字排序。圆和圆之间不相交保证了这个关键字的相对大小一定不会变。

查询刚刚插入的圆的上半圆的前驱(在set中的所有半圆中,在当前圆下方最近的半圆)。如果它的前驱是一个上半圆,那么当前圆的深度等于其前驱的深度;若前驱是一个下半圆,那么说明当前圆被其前驱所包含,深度为前驱的深度+1。

  • 遇到圆的右边界就直接将其两个半圆从set中删除即可。

因为set中要插入同一id的两个半圆,那么只要用up表示当前圆是上半圆还是下半圆即可。重载运算符时,可以比较当前扫描线与半圆的交点,也可以以圆心的纵坐标为第一关键字,以上/下半圆为第二关键字进行比较。

注意,如果是以扫描线与半圆的交点进行比较的话,在扫描线进入/离开一个圆的时候,扫描线与两个半圆的交点会重合。需要在比较函数中将上半圆的交点纵坐标加上一个\(eps\)即可。

Code

我的排序方法是比较当前半圆和扫描线的交点

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<map>
#include<set>
#include<queue>
#include<vector>
#include<limits.h>
#define IL inline
#define re register
#define LL long long
#define ULL unsigned long long
#ifdef TH
#define debug printf("Now is %d\n",__LINE__);
#else
#define debug
#endif
using namespace std; template<class T>inline void read(T&x)
{
char ch=getchar();
int fu;
while(!isdigit(ch)&&ch!='-') ch=getchar();
if(ch=='-') fu=-1,ch=getchar();
x=ch-'0';ch=getchar();
while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}
x*=fu;
}
inline LL read()
{
LL x=0,fu=1;
char ch=getchar();
while(!isdigit(ch)&&ch!='-') ch=getchar();
if(ch=='-') fu=-1,ch=getchar();
x=ch-'0';ch=getchar();
while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}
return x*fu;
}
int G[55];
template<class T>inline void write(T x)
{
int g=0;
if(x<0) x=-x,putchar('-');
do{G[++g]=x%10;x/=10;}while(x);
for(int i=g;i>=1;--i)putchar('0'+G[i]);putchar('\n');
}
#define N 200010
int n,nowx;
LL X[N],Y[N],R[N];
struct Opt
{
LL pos;
int x;
bool insert;
Opt(LL a=0,int b=0,bool c=0)
{
pos=a,x=b,insert=c;
}
IL bool operator<(const Opt& z)const
{
return pos<z.pos;
}
};
vector<Opt>opt;
bool dep[N];
#define eps 1e-6
struct O
{
int x;
bool up;
O(int xx=0,bool u=1)
{
x=xx,up=u;
}
double calc()const
{
if(up) return Y[x]+sqrt(R[x]*R[x]-(X[x]-nowx)*(X[x]-nowx))+eps;
return Y[x]-sqrt(R[x]*R[x]-(X[x]-nowx)*(X[x]-nowx));
}
IL bool operator<(const O& z)const
{
return calc()<z.calc();
}
};
set<O>s;
set<O>::iterator it;
int main()
{
n=read();
for(int i=1;i<=n;i++)
{
X[i]=read();
Y[i]=read();
R[i]=read();
opt.push_back(Opt(X[i]-R[i],i,1));
opt.push_back(Opt(X[i]+R[i],i,0));
}
sort(opt.begin(),opt.end());
LL ans=0;
for(int i=0;i<opt.size();i++)
{
nowx=opt[i].pos;
if(opt[i].insert)
{
it=s.insert(O(opt[i].x,1)).first;
if(it==s.begin())
{
dep[opt[i].x]=1;
}
else
{
it--;
if(it->up)
{
dep[opt[i].x]=dep[it->x];
}
else
{
dep[opt[i].x]=dep[it->x]^1;
}
}
s.insert(O(opt[i].x,0));
if(dep[opt[i].x]) ans+=R[opt[i].x]*R[opt[i].x];
else ans-=R[opt[i].x]*R[opt[i].x];
}
else
{
s.erase(O(opt[i].x,1));
s.erase(O(opt[i].x,0));
}
}
write(ans);
return 0;
}

总结

扫描线是一种重要的思想。在其应用的过程中常常需要用到set​,线段树等数据结构进行维护。

洛谷 P3268 [JLOI2016]圆的异或并的更多相关文章

  1. 洛谷P3268 [JLOI2016]圆的异或并(扫描线)

    扫描线还不是很熟啊--不管是从想的方面还是代码实现的方面-- 关于这题,考虑一条平行于\(y\)轴的扫描线从左到右扫描每一个圆,因为只有相离和内含两种关系,只用在切线处扫描即可 我们设上半圆为1,下半 ...

  2. bzoj4561: [JLoi2016]圆的异或并 圆的扫描线

    地址:http://www.lydsy.com/JudgeOnline/problem.php?id=4561 题目: 4561: [JLoi2016]圆的异或并 Time Limit: 30 Sec ...

  3. BZOJ4561 JLoi2016 圆的异或并 【扫描线】【set】*

    BZOJ4561 JLoi2016 圆的异或并 Description 在平面直角坐标系中给定N个圆.已知这些圆两两没有交点,即两圆的关系只存在相离和包含.求这些圆的异或面积并.异或面积并为:当一片区 ...

  4. 【BZOJ4561】[JLoi2016]圆的异或并 扫描线

    [BZOJ4561][JLoi2016]圆的异或并 Description 在平面直角坐标系中给定N个圆.已知这些圆两两没有交点,即两圆的关系只存在相离和包含.求这些圆的异或面积并.异或面积并为:当一 ...

  5. 洛谷 P4592: bzoj 5338: [TJOI2018]异或

    题目传送门:洛谷P4592. 题意简述: 题面说的很清楚了. 题解: 发现没有修改很快乐.再看异或最大值操作,很容易想到可持久化 01trie. 这里要把 01trie 搬到树上,有点难受. 树剖太捞 ...

  6. bzoj4561: [JLoi2016]圆的异或并

    Description 在平面直角坐标系中给定N个圆.已知这些圆两两没有交点,即两圆的关系只存在相离和包含.求这些圆的异或面 积并.异或面积并为:当一片区域在奇数个圆内则计算其面积,当一片区域在偶数个 ...

  7. bzoj 4561: [JLoi2016]圆的异或并

    Description 在平面直角坐标系中给定N个圆.已知这些圆两两没有交点,即两圆的关系只存在相离和包含.求这些圆的异或面 积并.异或面积并为:当一片区域在奇数个圆内则计算其面积,当一片区域在偶数个 ...

  8. BZOJ 4561 [JLoi2016]圆的异或并 ——扫描线

    扫描线的应用. 扫描线就是用数据结构维护一个相对的顺序不变,带修改的东西. 通常只用于一次询问的情况. 抽象的看做一条垂直于x轴直线从左向右扫过去. 这道题目要求求出所有圆的异或并. 所以我们可以求出 ...

  9. [JLOI2016]圆的异或并

    Description 在平面直角坐标系中给定N个圆.已知这些圆两两没有交点,即两圆的关系只存在相离和包含.求这些圆的异或面积并.异或面积并为:当一片区域在奇数个圆内则计算其面积,当一片区域在偶数个圆 ...

  10. 洛谷 P3267 - [JLOI2016/SHOI2016]侦察守卫(树形 dp)

    洛谷题面传送门 经典题一道,下次就称这种"覆盖距离不超过 xxx 的树形 dp"为<侦察守卫模型> 我们考虑树形 \(dp\),设 \(f_{x,j}\) 表示钦定了 ...

随机推荐

  1. [Qt 基础-02] QToolButton

    QToolButton 文章目录 QToolButton 简介 1. arrowType 2. autoRaise 3. popupMode 4. toolButtonStyle 注意 信号的连接 样 ...

  2. golang中容易遇到的错误

    前言 在循环中,有几种情况可能会导致混乱,需要弄清楚. 循环迭代器变量中使用引用 出于效率考虑,我们经常使用单个变量来循环迭代器.但在循环中,每次循环迭代中都会有不同的值,有时候会导致未知的行为. i ...

  3. Laravel admin 用户头像显示不出的原因及解决方法

    已经使用命令 php artisan storage:link 创建过软链接了,头像仍然不显示. 发现链接显示的是 http://localhost/storage/images/b6f0ad07b9 ...

  4. SpringBoot应用调用Linkis进行任务调度执行SQl;进行数据质量分析

    基于Linkis的Rest-API调用任务 官网示例:"https://linkis.apache.org/zh-CN/docs/1.3.2/api/linkis-task-operator ...

  5. ATT&CK实战系列(三)红日靶场3

    本次打靶练习是一个黑盒测试.没有密码,我们的目标是拿到域控制器的权限,并找到其中的重要文件. 网络拓扑 网卡设置 centos为出网机,第一次运行,需重新获取桥接模式网卡ip. 需重启网络服务serv ...

  6. exGCD 2025/1/10

    前言: 全文均为蒟蒻作者手搓 虽也参考了许多 [luogu 题解/某SDN/cnblogs.com] 但很多地方均为作者瞎编 如有错误务必救救孩子 File int GCD(int a,int b){ ...

  7. Ant Design Pro 中 点击子菜单的时候,其他菜单不自动收起来

    记录一波自己在这段时间碰到的一个Ant Design Pro 的坑: 每次点击菜单都会将其他菜单自动收起来,导致一系列的用户体验不佳. 设置defaultOpenAll: true后依然不管用 经过各 ...

  8. 2024 蓝桥杯模拟赛3(div1+div2)

    2024 蓝桥杯模拟赛3(div1+div2) P8834 [传智杯 #3 决赛] 序列 简单的模拟,数据范围很小,暴力即可 点击查看代码 #include <bits/stdc++.h> ...

  9. LLM中的Top-K/Top-p/温度都是怎么发挥作用的?

    写在前面 许多大模型具有推理参数,用于控制输出的"随机性".常见的几个是 Top-K.Top-p,以及温度.比如我们常用的 Dify 平台就支持 Top-p 和 温度 的设置: 鼠 ...

  10. Windows系统设置开机自启动+分块压缩+文件共享

    开机自启动+分块压缩+文件共享 一.设置开机自启动 win+R 打开运行窗口,输入 shell:startup 此时桌面会弹出一个目录文件夹,只需要将需要启动的软件放入该文件夹即可开机自启. C:\U ...