深入Python胶水语言的本质:从CPython到各类扩展机制
在开始深入讲解Python如何作为胶水语言之前,我们需要先了解Python语言本身的实现机制。这对于理解Python如何与C语言交互至关重要。
CPython:Python的默认实现
当我们谈论Python时,实际上通常指的是CPython,即用C语言实现的Python解释器。这是Python的参考实现,也是最广泛使用的Python解释器。
CPython的基本架构
CPython主要包含以下几个部分:
- Python解释器核心
- 内存管理系统
- Python对象系统
- Python/C API
当我们执行一个Python程序时,大致流程是:
source code (.py文件)
→ 词法分析
→ 语法分析
→ 生成字节码 (.pyc文件)
→ Python虚拟机执行字节码
从CPython说起
要理解Python如何作为胶水语言工作,我们必须先深入了解CPython的工作机制。CPython是Python的参考实现,也是最广泛使用的Python解释器。
CPython的编译和执行过程
当我们运行一个Python程序时,实际发生了这些步骤:
- 词法分析:
def add(a, b):
return a + b
这段代码首先被分解成一系列标记(tokens):
NAME(def) NAME(add) LPAR NAME(a) COMMA NAME(b) RPAR COLON
NAME(return) NAME(a) PLUS NAME(b)
- 语法分析:
tokens被转换为抽象语法树(AST)。你可以用Python的ast模块查看:
import ast
code = """
def add(a, b):
return a + b
"""
tree = ast.parse(code)
print(ast.dump(tree, indent=2))
"""
Module(
body=[
FunctionDef(
name='add',
args=arguments(
posonlyargs=[],
args=[
arg(arg='a'),
arg(arg='b')],
kwonlyargs=[],
kw_defaults=[],
defaults=[]),
body=[
Return(
value=BinOp(
left=Name(id='a', ctx=Load()),
op=Add(),
right=Name(id='b', ctx=Load())))],
decorator_list=[])],
type_ignores=[])
"""
- 生成字节码:
AST被转换为Python字节码。使用dis模块可以查看:
import dis
def add(a, b):
return a + b
dis.dis(add)
输出类似:
0 LOAD_FAST 0 (a)
2 LOAD_FAST 1 (b)
4 BINARY_ADD
6 RETURN_VALUE
- 执行字节码:
Python虚拟机(PVM)执行这些字节码。这就是为什么Python是解释型语言。
Python 虚拟机和对象系统
CPython的核心是其虚拟机和对象系统。所有Python中的数据都是对象,包括函数、类、数字等。在C层面,它们都是PyObject结构体:
typedef struct _object {
Py_ssize_t ob_refcnt; /* 引用计数 */
PyTypeObject *ob_type; /* 对象类型 */
} PyObject;
更具体的类型会扩展这个基本结构。例如,Python的整数类型:
typedef struct {
PyObject_HEAD /* 包含基本的PyObject结构 */
long ob_ival; /* 实际的整数值 */
} PyIntObject;
Python.h:连接Python和C的桥梁
Python.h是Python C API的主要头文件,它定义了与Python解释器交互所需的所有接口。当我们编写C扩展时,这个文件会:
- 定义所有Python类型的C表示
- 提供引用计数宏(Py_INCREF,Py_DECREF)
- 提供对象创建和操作函数
- 定义异常处理机制
一个简单的例子:
#include <Python.h>
static PyObject*
my_sum(PyObject *self, PyObject *args) {
long a, b;
/* 解析参数 */
if (!PyArg_ParseTuple(args, "ll", &a, &b)) {
/* 若解析失败,PyArg_ParseTuple已设置异常 */
return NULL;
}
/* 检查溢出 */
if (a > PY_LLONG_MAX - b) {
PyErr_SetString(PyExc_OverflowError, "result too large");
return NULL;
}
/* 创建并返回结果 */
return PyLong_FromLong(a + b);
}
在这段代码中:
PyArg_ParseTuple负责将Python参数转换为C类型PyErr_SetString设置Python异常PyLong_FromLong将C的long转换为Python的int对象
这就是Python/C API的基础。在下一部分中,我们将详细讨论各种扩展机制,包括ctypes的性能开销原理,以及numpy等库的具体实现细节。
Python调用C代码的三种主要方式
1. Python/C API:底层但强大的方式
让我们通过一个详细的例子来理解Python/C API:
// example.c
#include <Python.h>
/*
* PyObject是Python对象在C中的表示
* 所有Python对象在C中都是PyObject指针
*/
static PyObject* add_numbers(PyObject* self, PyObject* args) {
int a, b;
// PyArg_ParseTuple解析Python传入的参数
// "ii"表示期望两个整数参数
if (!PyArg_ParseTuple(args, "ii", &a, &b)) {
return NULL; // 解析失败时返回NULL,Python会抛出异常
}
// Py_BuildValue构建Python对象并返回
// "i"表示构建一个整数对象
return Py_BuildValue("i", a + b);
}
/*
* 方法表,定义模块中的函数
* 每个入口包含:{方法名, 函数指针, 参数类型标志, 文档字符串}
*/
static PyMethodDef methods[] = {
{"add_numbers", add_numbers, METH_VARARGS, "Add two numbers"},
{NULL, NULL, 0, NULL} // 使用NULL标记结束
};
/*
* 模块定义结构体
* 包含模块的各种信息
*/
static struct PyModuleDef module = {
PyModuleDef_HEAD_INIT, // 必需的初始化宏
"example", // 模块名
NULL, // 模块文档
-1, // 模块状态,-1表示模块保持全局状态
methods // 方法表
};
/*
* 模块初始化函数
* 模块被import时调用
*/
PyMODINIT_FUNC PyInit_example(void) {
return PyModule_Create(&module);
}
要编译这个C扩展,我们需要创建setup.py:
from setuptools import setup, Extension
module = Extension('example',
sources=['example.c'])
setup(name='example',
version='1.0',
ext_modules=[module])
然后执行:
python setup.py build_ext --inplace
2. ctypes:Python标准库的桥梁
ctypes提供了一种更简单的方式来调用C函数:
from ctypes import cdll, c_int
# 加载动态链接库
lib = cdll.LoadLibrary('./libmath.so')
# 设置函数参数和返回值类型
lib.add_numbers.argtypes = [c_int, c_int]
lib.add_numbers.restype = c_int
# 调用C函数
result = lib.add_numbers(1, 2)
ctypes的优势在于不需要编写C代码,但它也有一些限制:
- 性能开销较大
- 类型安全性较差
- 不支持复杂的数据结构
ctypes的性能开销主要来自以下几个方面:
- 类型转换开销:
from ctypes import c_int, cdll
lib = cdll.LoadLibrary('./libmath.so')
# 每次调用都需要进行类型转换
result = lib.add(c_int(1), c_int(2))
当我们调用C函数时,ctypes需要:
- 将Python对象转换为C类型
- 调用C函数
- 将返回值转换回Python对象
这个过程涉及多次内存分配和复制。
- 函数调用开销:
// C代码
int add(int a, int b) {
return a + b;
}
# Python代码
lib.add.argtypes = [c_int, c_int]
lib.add.restype = c_int
# 每次调用都需要:
# 1. 查找函数指针
# 2. 设置参数
# 3. 调用函数
# 4. 检查错误
result = lib.add(1, 2)
- 动态查找开销:
ctypes需要在运行时动态查找符号,这比编译时链接慢。
比较一下性能差异:
import timeit
import ctypes
# ctypes版本
lib = ctypes.CDLL('./libmath.so')
lib.add.argtypes = [ctypes.c_int, ctypes.c_int]
lib.add.restype = ctypes.c_int
def ctypes_add():
return lib.add(1, 2)
# Python/C API版本
import example
def capi_add():
return example.add(1, 2)
# 性能测试
print("ctypes:", timeit.timeit(ctypes_add, number=1000000))
print("C API:", timeit.timeit(capi_add, number=1000000))
通常,C API版本会比ctypes快5-10倍。
3. pybind11:现代C++的最佳选择
pybind11通过模板元编程实现了优雅的接口。让我们看一个复杂点的例子:
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <pybind11/numpy.h>
namespace py = pybind11;
class Matrix {
private:
std::vector<double> data;
size_t rows, cols;
public:
Matrix(size_t r, size_t c) : rows(r), cols(c), data(r * c) {}
// 支持numpy数组操作
py::array_t<double> as_array() {
return py::array_t<double>(
{rows, cols}, // shape
{cols * sizeof(double), sizeof(double)}, // strides
data.data(), // data pointer
py::cast(this) // owner object
);
}
// 矩阵乘法
Matrix dot(const Matrix& other) {
if (cols != other.rows)
throw std::runtime_error("Dimension mismatch");
Matrix result(rows, other.cols);
// ... 实现矩阵乘法 ...
return result;
}
};
PYBIND11_MODULE(example, m) {
py::class_<Matrix>(m, "Matrix")
.def(py::init<size_t, size_t>())
.def("as_array", &Matrix::as_array)
.def("dot", &Matrix::dot)
.def("__repr__",
[](const Matrix& m) {
return "<Matrix object>";
}
);
}
这个例子展示了pybind11的几个重要特性:
- 自动类型转换
- 异常处理
- numpy集成
- 运算符重载
实际案例分析
1. NumPy的实现机制
NumPy的核心是ndarray,它的实现涉及多个层次:
Python层 (numpy/__init__.py, numpy/core/__init__.py等)
↓
C核心层 (numpy/core/src/multiarray/*.c)
↓
BLAS/LAPACK (线性代数计算库)
关键文件结构:
numpy/
├── _core/
│ ├── src/
│ │ ├── multiarray/
│ │ │ ├── array_method.c # 数组操作的C实现
│ │ │ └── descriptor.c # 数据类型描述符
│ │ └── umath/
│ │ └── loops.c # 数学运算的循环实现
│ └── _multiarray_umath.pyx # Cython接口
└── setup.py # 构建脚本
2. aiohttp的实现机制
aiohttp使用Cython来优化性能关键部分:
aiohttp/
├── _helpers.pyx # Cython实现的helpers
├── _http_parser.pyx # HTTP解析器的Cython实现
├── _http_writer.pyx # HTTP写入器的Cython实现
└── setup.py
3. PyTorch的pybind11实现
PyTorch大量使用pybind11来暴露C++接口:
// torch/csrc/Module.cpp
PYBIND11_MODULE(torch._C, m) {
py::class_<torch::Tensor>(m, "Tensor")
.def("backward", &torch::Tensor::backward)
.def("to", &torch::Tensor::to)
// ... 更多方法绑定
}
总结
Python的胶水特性不是偶然的,而是精心设计的结果。从最底层的Python/C API,到便捷的ctypes,再到现代化的pybind11,Python提供了完整的解决方案谱系。
理解这些机制不仅有助于我们更好地使用Python,也能帮助我们在需要时正确选择和实现C扩展。在实际工作中,要根据具体需求选择合适的方案,在性能和开发效率之间找到平衡点。
深入Python胶水语言的本质:从CPython到各类扩展机制的更多相关文章
- python为什么叫胶水语言?python为什么是系统脚本?
python为什么叫胶水语言?python为什么是系统脚本? 特点是什么? python现在最广为闻名的形容大概有这些: 他是很好的胶水语言.什么是胶水语言?反正当时的我不知道. 他是新一代的系统 ...
- Python中高层次的数据结构,动态类型和动态绑定,使得它非常适合于快速应用开发,也适合于作为胶水语言连接已有的软件部件。
https://github.com/jhao104/proxy_pool/blob/master/doc/introduce.md 3.代码模块 Python中高层次的数据结构,动态类型和动态绑定, ...
- Python的语言特性
1.Python的函数传参 Python中所有的变量都可以理解为内存中一个对象的“引用”,或者,也可以看似C中的void *的感觉.这里记住的是类型是属于对象的,而不是变量.对象分为两种: 可更改的: ...
- Python中变量的本质探索
Python中变量的本质探索 参考:Vamei博客Python进阶09 动态类型 ''' a = [1,2,3] ''' (1)这条"赋值语句"实际上是将a指向对象"[1 ...
- C语言的本质(28)——C语言与汇编之用汇编写一个Helloword
为了更加深入理解C语言的本质,我们需要学习一些汇编相关的知识.作为最基本的编程语言之一,汇编语言虽然应用的范围不算很广,但是非常重要.因为它能够完成许多其它语言所无法完成的功能.就拿 Linux 内核 ...
- C语言的本质(15)——C语言的函数接口入门
C语言的本质(15)--C语言的函数接口 函数的调用者和其实现者之间存在一个协议,在调用函数之前,调用者要为实现者提供某些条件,在函数返回时,实现者完成调用者需要的功能. 函数接口通过函数名,参数和返 ...
- C语言的本质(7)——C语言运算符大全
C语言的本质(7)--C语言运算符大全 C语言的结合方向 C语言中各运算符的结合性分为两种,即左结合性(自左至右)和右结合性(自右至左).例如算术运算符的结合性是自左至右,即先左后右.如有表达式 x- ...
- C语言的本质(4)——浮点数的本质与运算
C语言的本质(4)--浮点数的本质与运算 C语言规定了3种浮点数,float型.double型和long double型,其中float型占4个字节,double型占8个字节,longdouble型长 ...
- C语言的本质(3)——整数的本质与运算
C语言的本质(3)--整数的本质与运算 计算机存储的最小单位是字节(Byte),一个字节通常是8个bit.C语言规定char型占一个字节的存储空间.如果这8个bit按无符号整数来解释,则取值范围是0~ ...
- 各种编程语言功能综合简要介绍(C,C++,JAVA,PHP,PYTHON,易语言)
各种编程语言功能综合简要介绍(C,C++,JAVA,PHP,PYTHON,易语言) 总结 a.一个语言或者一个东西能火是和这种语言进入某一子行业的契机有关.也就是说这个语言有没有解决社会急需的问题. ...
随机推荐
- (系列九)使用Vue3+Element Plus创建前端框架(附源码)
说明 该文章是属于OverallAuth2.0系列文章,每周更新一篇该系列文章(从0到1完成系统开发). 该系统文章,我会尽量说的非常详细,做到不管新手.老手都能看懂. 说明:OverallAuth2 ...
- 学习JavaScript第二天
文章目录 1.运算符(操作符) 1.1运算符的分类 1.2算数运算符 1.3递增和递减运算符 1.4比较运算符 1.5逻辑运算符 2.选择结构 2.1if语句 2.1.1语法 2.1.2案例1:判断闰 ...
- 《使用Gin框架构建分布式应用》阅读笔记:p251-p271
<用Gin框架构建分布式应用>学习第14天,p251-p271总结,总21页. 一.技术总结 1.Docker & Docker Compose version: "3. ...
- Windows编译运行webrtc全过程,并实现屏幕共享
文章分为三部分,代码获取/编译/运行. 第一步获取代码,打开cmd执行以下指令即可 set WORKSPACE=E:\webrtc mkdir %WORKSPACE% cd /d %WORKSPACE ...
- salesforce零基础学习(一百四十一)刷新dev sandbox需要强制group
本篇参考:https://help.salesforce.com/s/articleView?id=sf.data_sandbox_selective_access.htm&type=5 背景 ...
- Eclipse 调试窗口无法显示,以及断点设置无效问题的解决方法
问题描述一:在下载了2020.3的Eclipse之后,调试程序,无法弹出调试窗口及变量信息. 解决方案:菜单栏:windows--show view--Other--找到Debug文件夹,可以挑选自己 ...
- 【Playwright + Python】系列(九)Playwright 调用 Chrome 插件,小白也能事半功倍
哈喽,大家好,我是六哥!今天我来给大家分享一下如何使用playwight调用chrome插件,面向对象为功能测试及零基础小白,我尽量用大白话的方式举例讲解,力求所有人都能看懂,建议大家先收藏,以免后面 ...
- 异步编程在ArkTS中具体怎么实现?
大家好,我是 V 哥,很好奇,在ArkTS中实现异步编程是怎样的,今天的内容来聊聊这个问题,总结了一些学习笔记,分享给大家,在 ArkTS中实现异步编程主要可以通过以下几种方式: 1. 使用async ...
- 【深入Java虚拟机】之七:Java编译与JIT编译
编译过程 不论是物理机还是虚拟机,大部分的程序代码从开始编译到最终转化成物理机的目标代码或虚拟机能执行的指令集之前,都会按照如下图所示的各个步骤进行: 其中绿色的模块可以选择性实现.很容易看出,上图中 ...
- 使用SwingWorker异步加载JTree
SwingWorker是Java SE 6.0新加入的一个工具包,利用它可以使长时间运行并更新用户界面的任务大大简化.本文以一个异步加载JTree的demo演示了SwingWorker的基本功能. 环 ...