在昇腾Ascend 910B上运行Qwen2.5推理
目前在国产 AI 芯片,例如昇腾 NPU 上运行大模型是一项广泛且迫切的需求,然而当前的生态还远未成熟。从底层芯片的算力性能、计算架构的算子优化,到上层推理框架对各种模型的支持及推理加速,仍有很多需要完善的地方。
今天带来一篇在昇腾 910B 上运行 Qwen 2.5 执行推理的操作实践。
配置昇腾环境
在昇腾 NPU 服务器上,确认昇腾 NPU 驱动已安装:
npu-smi info
根据架构下载对应的 CANN Toolkit 包(开发套件)和对应芯片的 Kernel 包(CANN 算子) https://www.hiascend.com/zh/software/cann/community-history:
wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/Milan-ASL/Milan-ASL%20V100R001C19SPC703/Ascend-cann-toolkit_8.0.RC3.alpha003_linux-aarch64.run
wget https://ascend-repo.obs.cn-east-2.myhuaweicloud.com/Milan-ASL/Milan-ASL%20V100R001C19SPC703/Ascend-cann-kernels-910b_8.0.RC3.alpha003_linux-aarch64.run
安装 Toolkit,按提示操作:
sudo sed -i 's/user=true/user=false/' ~/.pip/pip.conf
sudo chmod +x Ascend-cann-toolkit_8.0.RC3.alpha003_linux-aarch64.run && sudo ./Ascend-cann-toolkit_8.0.RC3.alpha003_linux-aarch64.run --install --install-for-all
安装 Kernel,按提示操作:
sudo chmod +x Ascend-cann-kernels-910b_8.0.RC3.alpha003_linux-aarch64.run && sudo ./Ascend-cann-kernels-910b_8.0.RC3.alpha003_linux-aarch64.run --install --install-for-all
配置环境变量:
sudo echo "source /usr/local/Ascend/ascend-toolkit/set_env.sh" >> /etc/profile
source /usr/local/Ascend/ascend-toolkit/set_env.sh
昇腾环境已经配置完成,接下来准备运行 Qwen 2.5 模型的私有大模型服务平台。
安装 GPUStack
GPUStack 是一个开源的大模型即服务平台,支持 Nvidia、Apple Metal、华为昇腾和摩尔线程等各种类型的 GPU/NPU,可以在昇腾 910B 上运行包括 Qwen 2.5 在内的各种大模型,安装步骤如下。
通过以下命令在昇腾 NPU 服务器上在线安装 GPUStack,在安装过程中需要输入 sudo 密码:
curl -sfL https://get.gpustack.ai | sh -
如果环境连接不了 GitHub,无法下载一些二进制文件,使用以下命令安装,用 --tools-download-base-url
参数指定从腾讯云对象存储下载:
curl -sfL https://get.gpustack.ai | sh - --tools-download-base-url "https://gpustack-1303613262.cos.ap-guangzhou.myqcloud.com"
当看到以下输出时,说明已经成功部署并启动了 GPUStack:
[INFO] Install complete.
GPUStack UI is available at http://localhost.
Default username is 'admin'.
To get the default password, run 'cat /var/lib/gpustack/initial_admin_password'.
CLI "gpustack" is available from the command line. (You may need to open a new terminal or re-login for the PATH changes to take effect.)
接下来按照脚本输出的指引,拿到登录 GPUStack 的初始密码,执行以下命令:
cat /var/lib/gpustack/initial_admin_password
在浏览器访问 GPUStack UI,用户名 admin,密码为上面获得的初始密码。
重新设置密码后,进入 GPUStack:
纳管昇腾 NPU 资源
GPUStack 支持纳管 Linux、Windows 和 macOS 设备的 GPU 资源,如果有多台昇腾 NPU 服务器,通过以下步骤来纳管这些 NPU 资源。
其他节点需要通过认证 Token 加入 GPUStack 集群,在 GPUStack Server 节点执行以下命令获取 Token:
cat /var/lib/gpustack/token
拿到 Token 后,在其他节点上运行以下命令添加 Worker 到 GPUStack,纳管这些节点的 NPU(将其中的 http://YOUR_IP_ADDRESS
替换为 GPUStack 访问地址,将 YOUR_TOKEN
替换为用于添加 Worker 的认证 Token):
curl -sfL https://get.gpustack.ai | sh - --server-url http://YOUR_IP_ADDRESS --token YOUR_TOKEN --tools-download-base-url "https://gpustack-1303613262.cos.ap-guangzhou.myqcloud.com"
纳管的昇腾 NPU 服务器资源如下:
部署 Qwen 2.5 模型
在 GPUStack 的模型菜单中部署模型。GPUStack 支持从 HuggingFace、Ollama Library、ModelScope 和私有模型仓库部署模型,国内网络建议从 ModelScope 部署。
GPUStack 支持 vLLM 和 llama-box 推理后端,llama-box 是 llama.cpp 的优化版本,对性能和稳定性进行了针对性的优化。目前 GPUStack 中基于 llama-box 提供对昇腾 NPU 的支持,在昇腾 NPU 上部署模型需要模型为 GGUF 格式。
从 ModelScope 部署 Qwen 2.5 的全系列模型,目前 CANN 算子的支持完整度方面还有不足,目前只能运行 FP16 精度、Q8_0 和 Q4_0 量化的模型,建议运行 FP16 精度的模型:
- Qwen2.5-0.5B-Instruct-GGUF FP16
- Qwen2.5-1.5B-Instruct-GGUF FP16
- Qwen2.5-3B-Instruct-GGUF FP16
- Qwen2.5-7B-Instruct-GGUF FP16
- Qwen2.5-14B-Instruct-GGUF FP16
- Qwen2.5-32B-Instruct-GGUF FP16
- Qwen2.5-72B-Instruct-GGUF FP16
来看其中 Qwen 2.5 72B 模型的具体运行情况,Qwen 2.5 72B 被调度到 3 块 910B 上运行:
在 Dashboard 可以看到 Qwen 2.5 72B 被分配了 140.1 GiB 显存和 8.1 GiB 内存:
从 Playground 的实际测试来看,使用 llama-box 在昇腾 910B 上运行 Qwen 2.5 72B 的推理性能表现为 6 Tokens/s 左右,NPU 利用率在 10~30%左右:
以下为 Qwen 2.5 全系列模型在昇腾 910B 上的推理性能表现汇总数据,包括 Qwen2.5 0.5B、1.5B、3B 的 Q8_0 和 Q4_0 量化的推理性能数据作为对比参考:
Model | Tokes / Second | NPU Util | NPU Mem | NPUs |
---|---|---|---|---|
Qwen2.5 0.5B FP16 | 42 tokens/second | Util 6~7% | Mem 7% | 单卡 |
Qwen2.5 1.5B FP16 | 35 tokens/second | Util 11~13% | Mem 10% | 单卡 |
Qwen2.5 3B FP16 | 29 tokens/second | Util 15~16% | Mem 15% | 单卡 |
Qwen2.5 7B FP16 | 32 tokens/second | Util 16~21% | Mem 16% | 单卡 |
Qwen2.5 14B FP16 | 19 tokens/second | Util 19~22% | Mem 28% | 单卡 |
Qwen2.5 32B FP16 | 10.5 tokens/second | Util 10~45% | Mem 54% | 双卡 |
Qwen2.5 72B FP16 | 6 tokens/second | Util 10~60% | Mem 78% | 三卡 |
Qwen2.5 0.5B Q8_0 | 6.5 tokens/second | Util 2~5% | Mem 6% | 单卡 |
Qwen2.5 0.5B Q4_0 | 6 tokens/second | Util 4~5% | Mem 6% | 单卡 |
Qwen2.5 1.5B Q8_0 | 3.5 tokens/second | Util 4~11% | Mem 8% | 单卡 |
Qwen2.5 1.5B Q4_0 | 17~18 tokens/second | Util 9~12% | Mem 7% | 单卡 |
Qwen2.5 3B Q8_0 | 3.2 tokens/second | Util 10~15% | Mem 10% | 单卡 |
Qwen2.5 3B Q4_0 | 14.5 tokens/second | Util 8~15% | Mem 8% | 单卡 |
对其中的 Qwen 2.5 0.5B FP16 模型进行并发测试的性能表现如下:
CC | Tokens / Second | TP | NPU Util | NPU Mem |
---|---|---|---|---|
1 | 39 tokens/second | 39 | Util 6~7% | Mem 7% |
2 | 38 tokens/second | 76 | Util 6~7% | Mem 7% |
3 | 37.66 tokens/second | 113 | Util 6~7% | Mem 7% |
4 | 34.25 tokens/second | 137 | Util 6~7% | Mem 7% |
5 | 31 tokens/second | 155 | Util 6~7% | Mem 7% |
6 | 28.16 tokens/second | 169 | Util 6~7% | Mem 7% |
7 | 27.57 tokens/second | 193 | Util 6~7% | Mem 7% |
8 | 26.87 tokens/second | 215 | Util 6~7% | Mem 7% |
9 | 26 tokens/second | 234 | Util 6~7% | Mem 7% |
10 | 26.9 tokens/second | 269 | Util 6~7% | Mem 7% |
20 | 20.3 tokens/second | 406 | Util 6~7% | Mem 8% |
50 | 10.34 tokens/second | 517 | Util 3~5% | Mem 8% |
100 | 4.17 tokens/second | 417 | Util 2~5% | Mem 9% |
从测试结果来看,目前硬件性能未得到充分发挥,CANN 算子优化方面还有可观的优化空间,推理引擎层面也还有一些可以优化的推理加速技术,也期待后续 GPUStack 的另外一个高性能推理后端 vLLM 对昇腾 NPU 的支持,提供更佳的推理性能表现。
以上为使用 GPUStack 在昇腾 910B 上运行 Qwen 2.5 推理的操作实践。GPUStack 是一个开源的大模型即服务平台,以下为 GPUStack 功能的简单介绍。
GPUStack 功能介绍
异构 GPU 支持:支持异构 GPU 资源,当前支持 Nvidia、Apple Metal、华为昇腾和摩尔线程等各种类型的 GPU/NPU
多推理后端支持:支持 vLLM 和 llama-box (llama.cpp) 推理后端,兼顾生产性能需求与多平台兼容性需求
多平台支持:支持 Linux、Windows 和 macOS 平台,覆盖 amd64 和 arm64 架构
多模型类型支持:支持 LLM 文本模型、VLM 多模态模型、Embedding 文本嵌入模型 和 Reranker 重排序模型等各种类型的模型
多模型仓库支持:支持从 HuggingFace、Ollama Library、ModelScope 和私有模型仓库部署模型
丰富的自动/手动调度策略:支持紧凑调度、分散调度、指定 Worker 标签调度、指定 GPU 调度等各种调度策略
分布式推理:如果单个 GPU 无法运行较大的模型,可以通过 GPUStack 的分布式推理功能,自动将模型运行在跨主机的多个 GPU 上
CPU 推理:如果没有 GPU 或 GPU 资源不足,GPUStack 可以用 CPU 资源来运行大模型,支持 GPU&CPU 混合推理和纯 CPU 推理两种 CPU 推理模式
多模型对比:GPUStack 在 Playground 中提供了多模型对比视图,可以同时对比多个模型的问答内容和性能数据,以评估不同模型、不同权重、不同 Prompt 参数、不同量化、不同 GPU、不同推理后端的模型 Serving 效果
GPU 和 LLM 观测指标:提供全面的性能、利用率、状态监控和使用数据指标,以评估 GPU 和 LLM 的利用情况
GPUStack 作为一个开源项目,只需要非常简单的安装设置,就可以开箱即用地构建企业私有大模型即服务平台。
总结
以上为使用 GPUStack 在昇腾 910B 上运行 Qwen 2.5 的操作实践,项目的开源地址为:https://github.com/gpustack/gpustack。
期待后续国产 AI 芯片在算子优化上更加完善,同时也期待上层推理引擎对国产 AI 芯片的更多支持,充分发挥国产 AI 芯片的硬件性能,提供更佳的推理性能表现。
如果觉得写得不错,欢迎点赞、转发、关注。
在昇腾Ascend 910B上运行Qwen2.5推理的更多相关文章
- 在传统.NET Framework 上运行ASP.NET Core项目
新的项目我们想用ASP.NET Core来开发,但是苦于我们历史的遗产很多,比如<使用 JavaScriptService 在.NET Core 里实现DES加密算法>,我们要估计等到.N ...
- Hyper-V上运行的Linux虚拟机验证是否安装了集成服务
Hyper-V上运行的Linux虚拟机验证是否安装了集成服务 ps aux|grep "hv"root 311 0.0 0.0 0 0 ? ...
- 通过Mono 在 Heroku 上运行 .NET 应用
英文原文:Running .NET on Heroku 中文原文:在 Heroku 上运行 .NET 应用 自从加入了Heroku之后,我就想在这个平台上运行.NET程序.现在我很高兴向大家宣布,我们 ...
- Linux上运行NET
今天尝试了下Ubuntu上运行NET程序,按照 https://github.com/aspnet/Home 的指引,一步一步来: 1.安装DNVM(原名KVM) Linux控制台下输入 curl - ...
- Mono 4.0 Mac上运行asp.net mvc 5.2.3
Mono 4.0 已经发布,二进制包已经准备好,具体的发布说明参见:http://www.mono-project.com/docs/about-mono/releases/4.0.0/. 今天在Ma ...
- ASP.NET Core 中文文档 第二章 指南(5) 在 Nano Server 上运行ASP.NET Core
原文 ASP.NET Core on Nano Server 作者 Sourabh Shirhatti 翻译 娄宇(Lyrics) 校对 刘怡(AlexLEWIS).许登洋(Seay).谢炀(kile ...
- 【无私分享:ASP.NET CORE 项目实战(第十章)】发布项目到 Linux 上运行 Core 项目
目录索引 [无私分享:ASP.NET CORE 项目实战]目录索引 简介 ASP.Net Core 给我们带来的最大的亮点就是跨平台,我在我电脑(win7)上用虚拟机建了个 CentOS7 ,来演示下 ...
- 玩儿转物联网IoT - 在Beagle Bone Black上运行node.js 程序
物联网(IoT)技术方兴未艾,智能手环,智能血压计,智能眼镜甚至智能鞋垫都开始进入我们的生活,各种智能设备层出不穷,世界已经到了一个"人有多大胆,地有多大产"的时代,不玩儿点物联网 ...
- 不装mono,你的.NET程序照样可以在Linux上运行!
让.NET应用程序在linux上运行,目前通用的做法就是在Linux上安装mono,然后通过”mono your.exe“命令运行这个程序. 这种运行.net程序的办法有两个弱点,一个是需要客户机安装 ...
- Spark源码编译并在YARN上运行WordCount实例
在学习一门新语言时,想必我们都是"Hello World"程序开始,类似地,分布式计算框架的一个典型实例就是WordCount程序,接触过Hadoop的人肯定都知道用MapRedu ...
随机推荐
- Spring启动报8080端口被占用问题
1.window下关闭8080端口 win+R:输入cmd,回车 在黑窗口中输入指令:netstat -ano | findstr 8080 指令的意思是找出占用8080端口的进程pid ...
- QT基础-弹出框(信息框,模态框,操作框)
学习前端知识的时候就了解到让用户使用的界面一定要足够清晰,因为你永远不知道用户会以何种方式打开你开发的软件,所以莫泰提示框就很重要了.下面将会介绍几本的集中模态对话框,用来提升用户体验! 1.模态框 ...
- ucos cpu_a.asm 注释
EXPORT CPU_SR_Save import:翻译为进口或引入,表明要调用的函数为外部文件定义 export:翻译为出口或输出,表明该符号可以被外部模块使用,类似于C中的extern功能. ;* ...
- shell脚本中$0 $1 $# $@ $* $? $$ 的各种符号意义详解
一.概述 shell中有两类字符:普通字符.元字符. 1. 普通字符 在Shell中除了本身的字面意思外没有其他特殊意义,即普通纯文本: 2. 元字符 是Shell的保留字符,在Shell中有着特殊的 ...
- tar分段压缩导入
压缩 ll drwxrwxrwx 4 postgres postgres 20480 Oct 10 14:54 gitee-repo #分段压缩 tar czf - gitee-repo/ | spl ...
- 什么是淘宝API?
淘宝API是淘宝开放平台提供给开发者的一系列应用程序编程接口,它们允许开发者访问和使用淘宝的数据和服务.通过这些API,开发者可以构建应用程序,实现商品信息检索.订单管理.用户行为分析.物流跟踪等 ...
- Gmail 别名
Gmail 有一个很少人知道但是非常实用的功能,那就是别名.Gmail 允许用户通过在基本邮箱地址中添加特定符号和文本来创建多个别名.这些别名都指向同一个 Gmail 账户,方便用户进行邮件管理.过滤 ...
- 全网最适合入门的面向对象编程教程:43 Python 常用复合数据类型-扩展内置数据类型
全网最适合入门的面向对象编程教程:43 Python 常用复合数据类型-扩展内置数据类型 摘要: 在 Python 中,内置数据类型(如列表.字典.集合等)非常强大,但在某些情况下,可能需要扩展这些数 ...
- 【YashanDB数据库】YAS-02079 archive log mode must be enabled when database is in replication mode
[标题]错误码处理 [问题分类]调整归档 [关键字]关闭归档.YAS-02079.replication mode [问题描述]执行alter database noarchivelog 关闭归档时, ...
- EF Core – Custom Migrations (高级篇)
前言 会写这篇是因为最近开始大量使用 SQL Server Trigger 来维护冗余 (也不清楚这路对不对). EF Core migrations 没有支持 Trigger Github Issu ...