设代数式序列 $q_1(t), q_2(t), ..., q_{n-1}(t)$ ,由它们生成的多项式形式的表达式(不一定是多项式):

$$p(t)=x_1+x_2q_1(t)+...x_nq_1(t)q_2(t)..q_{n-1}(t)=\sum\limits_{i=1}^n(x_i\prod\limits_{j=1}^{i-1}q_j(t))$$  一般来讲,按照这个形式计算函数在 $t_0$ 点的取值的复杂度为:n-1次 $q_i(t)$ 求值,n-1次浮点数乘法(生成n个不同的乘积),n-1次乘积和常系数浮点数乘法,n-1次浮点数加法 $\Rightarrow$ 总计n-1次 $q_i(t)$ 求值和 $T(n)\approx 3n$ 次浮点数运算。这需要在计算过程中存储保留一个 $\prod\limits_{j=1}^{i-1}q_j(t)$ 的结果,避免重复运算(那样将会使得生成乘积的n次浮点乘法变成$n^2/2$ 次)。

  利用Horner嵌套算法,可以在 $T(n)\approx 3n$ 的基础上再进一步。Horner嵌套算法的表达式是:$$p(t)=x_1+q_1(t)(x_2+q_2(t)(x_3+q_3(t)(...(x_{n-1}+q_{n-1}(t)x_n)...)))$$  迭代的伪代码可以写成:

$poly = x_n\\for\quad i = n -1 to 1\\ \quad poly = x_i+q_i(t)\times poly\\ end$

  Horner嵌套算法需要n-1次 $q_i(t)$ 求值(这是免不了的),n-1次浮点数乘法,和n-1次浮点数加法,这将把复杂度再削减到n次求值和 $T(n)\approx 2n$ 次浮点数运算。考虑到函数求值是非常普遍和基本的操作,即使只是在复杂度上打个折扣也是非常可观的事情。因此形如上式的多项式型表达式,只要可以使用Horner嵌套算法就应当使用。

  Horner嵌套算法适用于通过单项式表达的多项式求值,即 $p(t)=x_1+x_2t+x_3t^2+...+x_nt^{n-1}$ ,此处 $q_1(t)=q_2(t)=...=q_n(t)=t$;同样也适用于通过牛顿插值表达的多项式,即 $p(t)=x_1+x_2(t-t_1)+...+x_n(t-t_1)..(t-t_n)$ ,此处 $q_i(t)=t-t_i$ 。

多项式函数插值:多项式形式函数求值的Horner嵌套算法的更多相关文章

  1. 表达式求值--数据结构C语言算法实现

    这篇博客介绍的表达式求值是用C语言实现的,只使用了c++里面的引用. 数据结构课本上的一个例题,但是看起来很简单,实现却遇到了很多问题. 这个题需要构建两个栈,一个用来存储运算符OPTR, 一个用来存 ...

  2. 多项式函数插值:全域多项式插值(一)单项式基插值、拉格朗日插值、牛顿插值 [MATLAB]

    全域多项式插值指的是在整个插值区域内形成一个多项式函数作为插值函数.关于多项式插值的基本知识,见“计算基本理论”. 在单项式基插值和牛顿插值形成的表达式中,求该表达式在某一点处的值使用的Horner嵌 ...

  3. 多项式求值问题(horner规则)——Python实现

    # 多项式求值(Horner规则) # 输入:A[a0,a1,a2...an],x的值 # 输出:给定的x下多项式的值p   # Horner迭代形式实现 1 # 在此修改初值 2 A = [2, 6 ...

  4. Python 函数的一般形式及参数

    #!/usr/bin/env python # -*- coding:utf-8 -*- # @Time : 2017/11/01 21:46 # @Author : lijunjiang # @Fi ...

  5. FZU2215 Simple Polynomial Problem(中缀表达求值)

    比赛时没做出这题太可惜了. 赛后才反应过来这就是个中缀表达式求值,数字栈存的不是数字而是多项式. 而且,中缀表达式求值很水的,几行就可以搞定. #include<cstdio> #incl ...

  6. C++求值顺序

    <C++Primer5th>中文版第124页 C++语言没有明确规定大多数二元运算符的求值顺序, 给编译器优化留下了余地. 这种策略实际上是在代码生成效率和程序潜在缺陷之间进行了权衡,这个 ...

  7. 数据结构算法C语言实现(八)--- 3.2栈的应用举例:迷宫求解与表达式求值

    一.简介 迷宫求解:类似图的DFS.具体的算法思路可以参考书上的50.51页,不过书上只说了粗略的算法,实现起来还是有很多细节需要注意.大多数只是给了个抽象的名字,甚至参数类型,返回值也没说的很清楚, ...

  8. luogu P5667 拉格朗日插值2 拉格朗日插值 多项式多点求值 NTT

    LINK:P5667 拉格朗日插值2 给出了n个连续的取值的自变量的点值 求 f(m+1),f(m+2),...f(m+n). 如果我们直接把f这个函数给插值出来就变成了了多项式多点求值 这个难度好像 ...

  9. YTU 2452: 麦克劳林用于函数求值

    2452: 麦克劳林用于函数求值 时间限制: 1 Sec  内存限制: 128 MB 提交: 18  解决: 12 题目描述 泰勒公式是一个用函数在某点的信息描述其附近取值的公式.如果函数足够光滑的话 ...

随机推荐

  1. Android 控制闪光灯

    首先闪光灯可以用android.hardware.camera来控制. 1.添加权限 <uses-permission android:name="android.permission ...

  2. mybatis generator如何定制JavaTypeResolver,使smallint类型的数据库字段在po中的类型为Integer?

    一.问题概述 忙了一段时间的jenkins持续集成,又要开始开发任务了.这两天在用mybatis generator来逆向生成dao层工程. 其中一个问题在于,组长在设计表的时候,不少枚举使用了sma ...

  3. 跟bWAPP学WEB安全(PHP代码)--SSL(Server-Side-Include)漏洞

    什么是Server-Side-Include漏洞 服务端包含漏洞是指发送指令到服务器,服务器会将指令运行完,把运行结果包含在返回文件中发送给你.利用这种漏洞可以获取服务端的信息甚至执行命令,这样的指令 ...

  4. Centos 使用 docker

    公司linux服务器基本使用的Centos,以下切换为Centos进行docker的操作. 查看系统版本 [root@Sonar-104 ~]# cat /etc/redhat-release Cen ...

  5. DependencyProperty属性介绍

    1  DependencyProperty从属属性 1.     从属属性要定义为静态.为了在外部可以绑定,最好定义为Public 2.     从属属性实际上是取代了正常属性的存值变量 3.     ...

  6. VC++ 多线程编程,win32,MFC 例子(转)

    一.问题的提出 编写一个耗时的单线程程序: 新建一个基于对话框的应用程序SingleThread,在主对话框IDD_SINGLETHREAD_DIALOG添加一个按钮,ID为IDC_SLEEP_SIX ...

  7. mysql如何使用索引index提升查询效率?

    https://dev.mysql.com/doc/refman/8.0/en/mysql-indexes.html Indexes are used to find rows with specif ...

  8. wpgcms---详情页面数据怎么渲染

    wpgcms的详情页面的数据会被保存在 contentInfo 这么一个字段里面. 面包屑导航调用: <p>当前位置 {% for c in crumb|slice(1, crumb|le ...

  9. python中filter(),map()和reduce()的用法及区别

    先看filter()方法 print(list(filter(lambda n : n % 2 == 1, range(20))))# 结果 [1, 3, 5, 7, 9, 11, 13, 15, 1 ...

  10. 洛谷P2178 品酒大会【后缀数组】【单调栈】

    题目描述 一年一度的“幻影阁夏日品酒大会”隆重开幕了.大会包含品尝和趣味挑战 两个环节,分别向优胜者颁发“首席品酒家”和“首席猎手”两个奖项,吸引了众多品酒师参加. 在大会的晚餐上,调酒师 Rainb ...