数据源加速见官方文档(必须使用DAAL自己的库):

Data Management

可以看到支持的数据源:同数据类型的table(matrix),不同类型的table,以及从DB文件取数据、数据序列化、压缩等。

在这些定制的数据源上,Intel DAAL使用自己底层的CPU进行硬件加速!下面摘自其官方:

Intel DAAL addresses all stages of the data analytics pipeline: preprocessing, transformation, analysis, modeling, validation, and decision-making.

Intel DAAL is developed by the same team as the Intel® Math Kernel Library (Intel® MKL)—the leading math library in the world. This team works closely with Intel® processor architects to squeeze performance from Intel processor-based systems.

Specs at a Glance

Processors Intel Atom®, Intel Core™, Intel® Xeon®, and Intel® Xeon Phi™ processors and compatible processors
Languages Python*, C++, Java*
Development Tools and Environments

Microsoft Visual Studio* (Windows*)

Eclipse* and CDT* (Linux*)

Operating Systems Use the same API for application development on multiple operating systems: Windows, Linux, and macOS*
统计特征的计算加速例子:
 
 
# file: low_order_moms_dense_batch.py
#===============================================================================
# Copyright 2014-2018 Intel Corporation.
#
# This software and the related documents are Intel copyrighted materials, and
# your use of them is governed by the express license under which they were
# provided to you (License). Unless the License provides otherwise, you may not
# use, modify, copy, publish, distribute, disclose or transmit this software or
# the related documents without Intel's prior written permission.
#
# This software and the related documents are provided as is, with no express
# or implied warranties, other than those that are expressly stated in the
# License.
#=============================================================================== ## <a name="DAAL-EXAMPLE-PY-LOW_ORDER_MOMENTS_DENSE_BATCH"></a>
## \example low_order_moms_dense_batch.py import os
import sys from daal.algorithms import low_order_moments
from daal.data_management import FileDataSource, DataSourceIface utils_folder = os.path.realpath(os.path.abspath(os.path.dirname(os.path.dirname(__file__))))
if utils_folder not in sys.path:
sys.path.insert(0, utils_folder)
from utils import printNumericTable DAAL_PREFIX = os.path.join('..', 'data') # Input data set parameters
dataFileName = os.path.join(DAAL_PREFIX, 'batch', 'covcormoments_dense.csv') def printResults(res):
printNumericTable(res.get(low_order_moments.minimum), "Minimum:")
printNumericTable(res.get(low_order_moments.maximum), "Maximum:")
printNumericTable(res.get(low_order_moments.sum), "Sum:")
printNumericTable(res.get(low_order_moments.sumSquares), "Sum of squares:")
printNumericTable(res.get(low_order_moments.sumSquaresCentered), "Sum of squared difference from the means:")
printNumericTable(res.get(low_order_moments.mean), "Mean:")
printNumericTable(res.get(low_order_moments.secondOrderRawMoment), "Second order raw moment:")
printNumericTable(res.get(low_order_moments.variance), "Variance:")
printNumericTable(res.get(low_order_moments.standardDeviation), "Standard deviation:")
printNumericTable(res.get(low_order_moments.variation), "Variation:") if __name__ == "__main__": # Initialize FileDataSource to retrieve input data from .csv file
dataSource = FileDataSource(
dataFileName,
DataSourceIface.doAllocateNumericTable,
DataSourceIface.doDictionaryFromContext
) # Retrieve the data from input file
dataSource.loadDataBlock() # Create algorithm for computing low order moments in batch processing mode
algorithm = low_order_moments.Batch() # Set input arguments of the algorithm
algorithm.input.set(low_order_moments.data, dataSource.getNumericTable()) # Get computed low order moments
res = algorithm.compute() printResults(res)  

Intel DAAL AI加速——支持从数据预处理到模型预测,数据源必须使用DAAL的底层封装库的更多相关文章

  1. Intel DAAL AI加速——神经网络

    # file: neural_net_dense_batch.py #================================================================= ...

  2. Intel DAAL AI加速 ——传统决策树和随机森林

    # file: dt_cls_dense_batch.py #===================================================================== ...

  3. TensorFlow从1到2(六)结构化数据预处理和心脏病预测

    结构化数据的预处理 前面所展示的一些示例已经很让人兴奋.但从总体看,数据类型还是比较单一的,比如图片,比如文本. 这个单一并非指数据的类型单一,而是指数据组成的每一部分,在模型中对于结果预测的影响基本 ...

  4. Keras 构建DNN 对用户名检测判断是否为非法用户名(从数据预处理到模型在线预测)

    一.  数据集的准备与预处理 1 . 收集dataset (大量用户名--包含正常用户名与非法用户名) 包含两个txt文件  legal_name.txt  ilegal_name.txt. 如下图所 ...

  5. 释放至强平台 AI 加速潜能 汇医慧影打造全周期 AI 医学影像解决方案

    基于英特尔架构实现软硬协同加速,显著提升新冠肺炎.乳腺癌等疾病的检测和筛查效率,并帮助医疗科研平台预防"维度灾难"问题 <PAGE 1 LEFT COLUMN: CUSTOM ...

  6. 华为高级研究员谢凌曦:下一代AI将走向何方?盘古大模型探路之旅

    摘要:为了更深入理解千亿参数的盘古大模型,华为云社区采访到了华为云EI盘古团队高级研究员谢凌曦.谢博士以非常通俗的方式为我们娓娓道来了盘古大模型研发的"前世今生",以及它背后的艰难 ...

  7. 【新人赛】阿里云恶意程序检测 -- 实践记录10.13 - Google Colab连接 / 数据简单查看 / 模型训练

    1. 比赛介绍 比赛地址:阿里云恶意程序检测新人赛 这个比赛和已结束的第三届阿里云安全算法挑战赛赛题类似,是一个开放的长期赛. 2. 前期准备 因为训练数据量比较大,本地CPU跑不起来,所以决定用Go ...

  8. 英特尔® 至强® 平台集成 AI 加速构建数据中心智慧网络

    英特尔 至强 平台集成 AI 加速构建数据中心智慧网络 SNA 通过 AI 方法来实时感知网络状态,基于网络数据分析来实现自动化部署和风险预测,从而让企业网络能更智能.更高效地为最终用户业务提供支撑. ...

  9. 第一章:AI人工智能 の 数据预处理编程实战 Numpy, Pandas, Matplotlib, Scikit-Learn

    本课主题 数据中 Independent 变量和 Dependent 变量 Python 数据预处理的三大神器:Numpy.Pandas.Matplotlib Scikit-Learn 的机器学习实战 ...

随机推荐

  1. python3 清除过滤emoji表情

    python3 清除过滤emoji表情 方法一: emoji处理库,emoji官网:https://pypi.org/project/emoji/ #安装 pip install emoji 官方例子 ...

  2. Jsp获取Java的重定向赋值(String)

    Jsp获取Java的重定向赋值(String) Java代码片段: //传递String request.setAttribute("msg", msg); //重定向 reque ...

  3. Socket:读写处理及连接断开的检测

    作为进程间通信及网络通信的一种重要技术,在实际的开发中,socket编程是经常被用到的.关于socket编程的一般步骤,这里不再赘述,相关资料和文章很多,google/baidu即可. 本文主要是探讨 ...

  4. Pycharm 2017 激活码

    Pycharm 2017 激活码 server选项里边输入:  http://idea.liyang.io 我是通过这个成功的

  5. 0xc0000005:读取位置时发生访问冲突

    这是空指针,比如: A* a=NULL; a->fun();//会提示标题错误,因为a没有分配空间

  6. MVC 视图的简单学习

    视图学习第一阶段:http://www.cnblogs.com/meetyy/p/3464432.html 视图学习第二阶段:http://www.cnblogs.com/meetyy/p/34665 ...

  7. nmap参数思维导图

    链接:https://pan.baidu.com/s/1vD0A6olQbVNmCCirpHBm0w 提取码:o994

  8. WinForm画网格并填充颜色

    因为研究CodeCombat上的最后一题,自己尝试分解题目,然后想到需要画网格,还有最优化的方法 源代码如下 using System; using System.Collections.Generi ...

  9. shell 基本操作小结

    1.echo和if else fi命令 #!/bin/bash echo hello;echo there filename=demo.sh if [ -e "$filename" ...

  10. jenkins 插件,下载地址

    http://updates.jenkins-ci.org/download/plugins/ 通常我们需要下载的插件有如下几个: