『PyTorch』第二弹重置_Tensor对象
Tensor基础操作
简单的初始化
import torch as t Tensor基础操作 # 构建张量空间,不初始化
x = t.Tensor(5,3)
x
-2.4365e-20 -1.4335e-03 -2.4290e+25
-1.0283e-13 -2.8296e-07 -2.0769e+22
-1.3816e-33 -6.4672e-32 1.4497e-32
1.6020e-19 6.2625e+22 4.7428e+30
4.0095e-08 1.1943e-32 -3.5308e+35
[torch.FloatTensor of size 5x3]
# 构建张量空间,[0,1]均匀分布初始化
x = t.rand(5,3)
x
0.9618 0.0669 0.1458
0.3154 0.0680 0.1883
0.1795 0.4173 0.0395
0.7673 0.4906 0.6148
0.0949 0.2366 0.7571
[torch.FloatTensor of size 5x3
检查尺寸
# 查看矩阵形状,返回时tuple的子类,可以直接索引
print(x.shape)
print(x.size()) """
torch.Size([5, 3])
torch.Size([5, 3])
"""
Tensor加法操作
- 符号加
- torch.add(out=Tensor)
- Tensor.add(),方法后面不带有下划线时方法不会修改Tensor本身,仅仅返回新的值
- Tensor.add_(),方法后面带有下划线时方法会修改Tensor本身,同时返回新的值
Tensor加法操作 # 加法操作:t.add()
y = t.rand(5,3) print(x + y)
print(t.add(x, y))
result = t.Tensor(5,3)
t.add(x, y, out=result)
print(result)
输出,
1.6288 0.4566 0.9290
0.5943 0.4722 0.7359
0.4316 1.0932 0.7476
1.6499 1.3201 1.5611
0.3274 0.4651 1.5257
[torch.FloatTensor of size 5x3] 1.6288 0.4566 0.9290
0.5943 0.4722 0.7359
0.4316 1.0932 0.7476
1.6499 1.3201 1.5611
0.3274 0.4651 1.5257
[torch.FloatTensor of size 5x3] 1.6288 0.4566 0.9290
0.5943 0.4722 0.7359
0.4316 1.0932 0.7476
1.6499 1.3201 1.5611
0.3274 0.4651 1.5257
[torch.FloatTensor of size 5x3]
输入:
# 加法操作:Tensor自带方法
print(y)
# 不改变y本身
print("y.add():\n", y.add(x))
print(y)
print("y.add_():\n", y.add_(x))
print(y)
输出,
0.6670 0.3897 0.7832
0.2788 0.4042 0.5476
0.2521 0.6759 0.7081
0.8825 0.8295 0.9462
0.2325 0.2286 0.7686
[torch.FloatTensor of size 5x3] y.add(): 1.6288 0.4566 0.9290
0.5943 0.4722 0.7359
0.4316 1.0932 0.7476
1.6499 1.3201 1.5611
0.3274 0.4651 1.5257
[torch.FloatTensor of size 5x3] 0.6670 0.3897 0.7832
0.2788 0.4042 0.5476
0.2521 0.6759 0.7081
0.8825 0.8295 0.9462
0.2325 0.2286 0.7686
[torch.FloatTensor of size 5x3] y.add_(): 1.6288 0.4566 0.9290
0.5943 0.4722 0.7359
0.4316 1.0932 0.7476
1.6499 1.3201 1.5611
0.3274 0.4651 1.5257
[torch.FloatTensor of size 5x3] 1.6288 0.4566 0.9290
0.5943 0.4722 0.7359
0.4316 1.0932 0.7476
1.6499 1.3201 1.5611
0.3274 0.4651 1.5257
[torch.FloatTensor of size 5x3]
Tensor索引以及和Numpy.array转换
Tensor对象和numpy的array对象高度相似,不仅可以相互转换,而且:
- 转换前后的两者共享内存,所以他们之间的转换很快,而且几乎不会消耗资源,这意味着一个改变另一个也随之改变
- 两者在调用时可以相互取代(应该是由于两者的内置方法高度相似)
虽然有Tensor.numpy()和t.from_numpy(),但是记不住的话使用np.array(Tensor)和t.Tensor(array)即可,同样可以共享内存。
Tensor索引
# Tensor索引和numpy的array类似
x[:, 1]
0.0669
0.0680
0.4173
0.4906
0.2366
[torch.FloatTensor of size 5]
Tensor->array
Tensor和numpy转换 a = t.ones_like(x)
b = a.numpy() # Tensor->array
b
array([[ 1., 1., 1.],
[ 1., 1., 1.],
[ 1., 1., 1.],
[ 1., 1., 1.],
[ 1., 1., 1.]], dtype=float32)
Tensor和array的交互
import numpy as np print(x) # Tensor和array的交互很强,一定程度上可以相互替代 a = np.ones_like(x)
print(a)
0.9618 0.0669 0.1458
0.3154 0.0680 0.1883
0.1795 0.4173 0.0395
0.7673 0.4906 0.6148
0.0949 0.2366 0.7571
[torch.FloatTensor of size 5x3] [[ 1. 1. 1.]
[ 1. 1. 1.]
[ 1. 1. 1.]
[ 1. 1. 1.]
[ 1. 1. 1.]]
array->Tensor(两者共享内存的验证)
b = t.from_numpy(a) # array->Tensor
print(a)
print(b)
b.add_(1) # 两者共享内存
print(a)
print(b)
[[ 1. 1. 1.]
[ 1. 1. 1.]
[ 1. 1. 1.]
[ 1. 1. 1.]
[ 1. 1. 1.]] 1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
[torch.FloatTensor of size 5x3] [[ 2. 2. 2.]
[ 2. 2. 2.]
[ 2. 2. 2.]
[ 2. 2. 2.]
[ 2. 2. 2.]] 2 2 2
2 2 2
2 2 2
2 2 2
2 2 2
[torch.FloatTensor of size 5x3]
试验np.array(Tensor)和t.Tensor(array),
import numpy as np
x = t.rand(5,3)
# Tensor和array的交互很强,一定程度上可以相互替代
a = np.ones_like(x)
print(a)
b = t.Tensor(a) # array->Tensor
print(a)
print(b)
b.add_(1) # 两者共享内存
print(a)
print(b)
print(np.array(x))
[[ 1. 1. 1.]
[ 1. 1. 1.]
[ 1. 1. 1.]
[ 1. 1. 1.]
[ 1. 1. 1.]]
[[ 1. 1. 1.]
[ 1. 1. 1.]
[ 1. 1. 1.]
[ 1. 1. 1.]
[ 1. 1. 1.]] 1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
[torch.FloatTensor of size 5x3] [[ 2. 2. 2.]
[ 2. 2. 2.]
[ 2. 2. 2.]
[ 2. 2. 2.]
[ 2. 2. 2.]] 2 2 2
2 2 2
2 2 2
2 2 2
2 2 2
[torch.FloatTensor of size 5x3] [[ 0.95334041 0.48346853 0.86516887]
[ 0.0904668 0.05142063 0.42738861]
[ 0.7112515 0.45674682 0.39708138]
[ 0.06700033 0.90959501 0.4757393 ]
[ 0.6760695 0.83767009 0.1341657 ]]
最后,实验以下cpu加速,当然,由于我的笔记本没有加速,所以条件是不满足的。
if t.cuda.is_available():
x = x.cuda()
y = y.cuda()
x+y
『PyTorch』第二弹重置_Tensor对象的更多相关文章
- 『PyTorch』第二弹_张量
参考:http://www.jianshu.com/p/5ae644748f21# 几个数学概念: 标量(Scalar)是只有大小,没有方向的量,如1,2,3等 向量(Vector)是有大小和方向的量 ...
- 关于『HTML5』:第二弹
关于『HTML5』:第二弹 建议缩放90%食用 咕咕咕咕咕咕咕!!1 (蒟蒻大鸽子终于更新啦) 自开学以来,经过了「一脸蒙圈的 半期考试」.「二脸蒙圈的 体测」的双重洗礼,我终于有空肝 HTML5 辣 ...
- 关于『Markdown』:第二弹
关于『Markdown』:第二弹 建议缩放90%食用 道家有云:一生二,二生三,三生万物 为什么我的帖子不是这样 各位打工人们! 自从我学了Markdown以来 发现 Markdown 语法真的要比 ...
- 关于『HTML』:第二弹
关于『HTML』:第二弹 建议缩放90%食用 第二弹! 它来了! 它来了! 我竟然没有拖更,对了,你们昨天用草稿纸了么 开始正文之前提一个问题:大家知道"%%%"是什么意思吗?就这 ...
- 『PyTorch』第九弹_前馈网络简化写法
『PyTorch』第四弹_通过LeNet初识pytorch神经网络_上 『PyTorch』第四弹_通过LeNet初识pytorch神经网络_下 在前面的例子中,基本上都是将每一层的输出直接作为下一层的 ...
- 『PyTorch』第一弹_静动态图构建if逻辑对比
对比TensorFlow和Pytorch的动静态图构建上的差异 静态图框架设计好了不能够修改,且定义静态图时需要使用新的特殊语法,这也意味着图设定时无法使用if.while.for-loop等结构,而 ...
- 『TensorFlow』第二弹_线性拟合&神经网络拟合_恰是故人归
Step1: 目标: 使用线性模拟器模拟指定的直线:y = 0.1*x + 0.3 代码: import tensorflow as tf import numpy as np import matp ...
- 『MXNet』第二弹_Gluon构建模型
上节用了Sequential类来构造模型.这里我们另外一种基于Block类的模型构造方法,它让构造模型更加灵活,也将让你能更好的理解Sequential的运行机制. 回顾: 序列模型生成 层填充 初始 ...
- 关于『Markdown』:第一弹
关于『Markdown』:第一弹 建议缩放90%食用 声明: 在我之前已有数位大佬发布 "Markdown" 的语法知识点, 在此, 仅整理归类以及补缺, 方便阅读. 感谢 C20 ...
随机推荐
- Python中的is和==的区别,==判断值是否相等,is判断地址是否一致
Python中的is和==的区别 Python中的对象包含三要素:id.type.value. 其中id用来唯一标示一个对象,type标识对象的类型,value是对象的值. is判断的是a对象是否就是 ...
- 能让程序做的事情坚决不用人来做——批量修复markdownlint MD034警告
欢迎和大家交流技术相关问题: 邮箱: jiangxinnju@163.com 博客园地址: http://www.cnblogs.com/jiangxinnju GitHub地址: https://g ...
- 如何禁用MySql总是定时弹出一个MySQLInstallerConsole.exe的窗口
如何禁用MySql总是定时弹出一个MySQLInstallerConsole.exe的窗口 禁用mysql总是弹出一个安装框的定时任务这一条安装命令,Installing MySQL 5.6.21 u ...
- window开机启动项设置和取消方法
window开机启动项1.添加开机启动项:开始-->所有程序-->启动-->双击(xp系统)或右键打开,把需要启动的软件快捷键拖放进去即可,遇到安全软件的拦截,只需选择 " ...
- bzoj3524 [Poi2014]Couriers/2223 [Coci 2009]PATULJCI
题目链接1 题目链接2 主席树模板题 两题有细节不同 #include<algorithm> #include<iostream> #include<cstdlib> ...
- 2016NOI冬令营day4
上午:随机算法/近似算法与随机算法的分析方法与应用实例 不懂,完全滑水QAQ :( 下午:计算理论与NP问题 只有讲2-sat和3-sat的时候能听懂,其他的基本都在滑水:( 晚上说是什么中学生学术训 ...
- SNMP学习笔记之SNMP介绍,OID及MIB库
1.1. SNMP概览 SNMP的基本知识介绍简单网络管理协议(SNMP-Simple Network Management Protocol)是一个与网络设备交互的简单方法.该规范是由IETF ...
- Python3 获取网络图片并且保存到本地
Python3 获取网络图片并且保存到本地 import requests from bs4 import BeautifulSoup from urllib import request impor ...
- HTML5 Chart.js 框架
HTML5 Chart.js 框架 版权声明:未经博主授权,内容严禁转载 ! Chart.js 概述: chart.js 是一个简单的.面向对象.为设计者开发者准备的图表绘制工具. 点击进入官方网址 ...
- iotop监控磁盘动态安装
开始装iotp tar xvf iotop-0.3.1.tar.gz 用python安装(如果没有蟒蛇, yum一个吧) cd iotop-0.3.1 python setup.py build py ...