机器学习现在是一大热门,研究的人特多,越来越多的新人涌进来。

不少人其实并没有真正想过,这是不是自己喜欢搞的东西,只不过看见别人都在搞,觉着跟大伙儿走总不会吃亏吧。

问题是,真有个“大伙儿”吗?就不会是“两伙儿”、“三伙儿”?如果有“几伙儿”,那到底该跟着“哪伙儿”走呢?

很多人可能没有意识到,所谓的machine learning community,现在至少包含了两个有着完全不同的文化、完全不同的价值观的群体,称为machine learning "communities"也许更合适一些。


第一个community,是把机器学习看作人工智能分支的一个群体,这群人的主体是计算机科学家。

现在的“机器学习研究者”可能很少有人读过1983年出的“Machine Learning: An Artificial Intelligence Approach”这本书。这本书的出版标志着机器学习成为人工智能中一个独立的领域。它其实是一部集早期机器学习研究之大成的文集,收罗了若干先贤(例 如Herbert Simon,那位把诺贝尔奖、图灵奖以及各种各样和他相关的奖几乎拿遍了的科学天才)的大作,主编是Ryszard S. Michalski(此君已去世多年了,他可算是机器学习的奠基人之一)、Jaime G. Carbonell(此君曾是Springer的LNAI的总编)、Tom Mitchell(此君是CMU机器学习系首任系主任、著名教材的作者,机器学习界没人不知道他吧)。Machine Learning杂志的创刊,正是这群人努力的结果。这本书值得一读。虽然技术手段早就日新月异了,但有一些深刻的思想现在并没有过时。各个学科领域总有 不少东西,换了新装之后又粉墨登场,现在热火朝天的transfer learning,其实就是learning by analogy的升级版。

人工智能的研究从以“推理”为重点到以“知识”为重点,再到以“学习”为重点,是有一条自然、清晰的脉络。人工智能出身的机器学习研究者,绝大部分 是把机器学习作为实现人工智能的一个途径,正如1983年的书名那样。他们关注的是人工智能中的问题,希望以机器学习为手段,但具体采用什么样的学习手 段,是基于统计的、代数的、还是逻辑的、几何的,他们并不care。

这群人可能对统计学习目前dominating的地位未必满意。靠统计学习是不可能解决人工智能中大部分问题的,如果统计学习压制了对其他手段的研 究,可能不是好事。这群人往往也不care在文章里show自己的数学水平,甚至可能是以简化表达自己的思想为荣。人工智能问题不是数学问题,甚至未必是 依靠数学能够解决的问题。人工智能中许多事情的难处,往往在于我们不知道困难的本质在哪里,不知道“问题”在哪里。一旦“问题”清楚了,解决起来可能并不 困难。

第二个community,是把机器学习看作“应用统计学”的一个群体,这群人的主体是统计学家。

和纯数学相比,统计学不太“干净”,不少数学家甚至拒绝承认统计学是数学。但如果和人工智能相比,统计学就太干净了,统计学研究的问题是清楚的,不象人工智能那样,连问题到底在哪里都不知道。在相当长时间里,统计学家和机器学习一直保持着距离。

慢慢地,不少统计学家逐渐意识到,统计学本来就该面向应用,而机器学习天生就是一个很好的切入点。因为机器学习虽然用到各种各样的数学,但要分析大 量数据中蕴涵的规律,统计学是必不可少的。统计学出身的机器学习研究者,绝大部分是把机器学习当作应用统计学。他们关注的是如何把统计学中的理论和方法变 成可以在计算机上有效实现的算法,至于这样的算法对人工智能中的什么问题有用,他们并不care。

这群人可能对人工智能毫无兴趣,在他们眼中,机器学习就是统计学习,是统计学比较偏向应用的一个分支,充其量是统计学与计算机科学的交叉。这群人对统计学习之外的学习手段往往是排斥的,这很自然,基于代数的、逻辑的、几何的学习,很难纳入统计学的范畴。

两个群体的文化和价值观完全不同。第一个群体认为好的工作,第二个群体可能觉得没有技术含量,但第一个群体可能恰恰认为,简单的才好,正因为很好地 抓住了问题本质,所以问题变得容易解决。第二个群体欣赏的工作,第一个群体可能觉得是故弄玄虚,看不出他想解决什么人工智能问题,根本就不是在搞人工智 能、搞计算机,但别人本来也没说自己是在“搞人工智能”、“搞计算机”,本来就不是在为人工智能做研究。

两个群体各有其存在的意义,应该宽容一点,不需要去互较什么短长。但是既然顶着Machine Learning这个帽子的不是“一伙儿”,而是“两伙儿”,那么要“跟进”的新人就要谨慎了,先搞清楚自己更喜欢“哪伙儿”。

引两位著名学者的话结尾,一位是人工智能大奖得主、一位是统计学习大家,名字我不说了,省得惹麻烦:

“I do not come to AI to do statistics”

“I do not have interest in AI”

 

 

原文地址:

http://hi.baidu.com/giqguarzqdbadpq/item/8d41e5160121a3ff65eabf8d

[转] 机器学习是什么——周志华的更多相关文章

  1. (二)《机器学习》(周志华)第4章 决策树 笔记 理论及实现——“西瓜树”——CART决策树

    CART决策树 (一)<机器学习>(周志华)第4章 决策树 笔记 理论及实现——“西瓜树” 参照上一篇ID3算法实现的决策树(点击上面链接直达),进一步实现CART决策树. 其实只需要改动 ...

  2. Reading | 《机器学习》(周志华)(未完待续)

    目录 I. 大师对人工智能和机器学习的看法 II. Introduction A. What is Machine Learning 什么是机器学习 B. Basic terms 基础术语 C. In ...

  3. 【Todo】【读书笔记】机器学习-周志华

    书籍位置: /Users/baidu/Documents/Data/Interview/机器学习-数据挖掘/<机器学习_周志华.pdf> 一共442页.能不能这个周末先囫囵吞枣看完呢.哈哈 ...

  4. 机器学习周志华 pdf统计学习人工智能资料下载

    周志华-机器学习 pdf,下载地址: https://u12230716.pipipan.com/fs/12230716-239561959 统计学习方法-李航,  下载地址: https://u12 ...

  5. 《AlphaGo世纪对决》与周志华《机器学习》观后感

    这两天看了<AlphaGo世纪对决>纪录片与南大周志华老师的<机器学习>,想谈谈对人工智能的感想. 首先概述一下视频的内容吧,AlphaGo与李世石对战的过程大家都有基本的了解 ...

  6. 周志华-机器学习西瓜书-第三章习题3.5 LDA

    本文为周志华机器学习西瓜书第三章课后习题3.5答案,编程实现线性判别分析LDA,数据集为书本第89页的数据 首先介绍LDA算法流程: LDA的一个手工计算数学实例: 课后习题的代码: # coding ...

  7. 周志华《机器学习》高清电子书pdf分享

    周志华<机器学习>高清电子书pdf下载地址 下载地址1:https://545c.com/file/20525574-415455837 下载地址2: https://pan.baidu. ...

  8. 偶尔转帖:AI会议的总结(by南大周志华)

    偶尔转帖:AI会议的总结(by南大周志华) 说明: 纯属个人看法, 仅供参考. tier-1的列得较全, tier-2的不太全, tier-3的很不全. 同分的按字母序排列. 不很严谨地说, tier ...

  9. 【转载】 AI会议的总结(by南大周志华)

    原文地址: https://blog.csdn.net/LiFeitengup/article/details/8441054 最近在查找期刊会议级别的时候发现这篇博客,应该是2012年之前的内容,现 ...

随机推荐

  1. 迁移TFS,批量将文档导入SharePoint 2013 文档库

    一.需求分析 公司需要将存在于旧系统(TFS)所有的文档迁移至新系统(SharePoint 2013).现已经将50G以上的文档拷贝到SharePoint 2013 Server上.这些文档是一些不规 ...

  2. Java Date and Calendar examples

    Java Date and Calendar examples This tutorial shows you how to work with java.util.Date and java.uti ...

  3. Spring Boot启动过程及回调接口汇总

    Spring Boot启动过程及回调接口汇总 链接: https://www.itcodemonkey.com/article/1431.html 来自:chanjarster (Daniel Qia ...

  4. mysql中and 和 or 联合使用

    以下是两张表,我只列出有用的字段. Table:student_score 学生成绩 sid(学生ID) cid(课程ID) score(分数) 5 1 50 5 2 110 5 3 64 5 4 n ...

  5. django -- while time zone support is active

    一.先看报错: django 在处理datetime类型的的报错/Library/Frameworks/Python.framework/Versions/3.6/lib/python3.6/site ...

  6. talend hive数据导入到mysql中

    thiveInput->tmap->tMysqloutput thiveInput: tmap: tmysqlOutput:注意编码问题:noDatetimeStringSync=true ...

  7. c# vs2010 excel 上传oracle数据

    excel 数据表上传到oracle数据库.过程例如以下: 1.打开本地excel文件 2.用OleDb连接excel文件 3.将来excel的数据读取到dataset中 4.把dataset 中数据 ...

  8. 腾讯云服务器 - 定时备份MariaDB/MySQL

    数据库数据备份尤为重要,而我们不会人工手动去备份,这样会很麻烦,我们都是通过服务器每日自定运行来做的,设置一个定时时间即可 首先我们看一下mysqldump这个文件的位置: 可以看到目录在 /usr/ ...

  9. 用Duplex实现消息广播

    WCF中定义3种消息交换模式: 1. Request/Reply; 2. One-Way; 3. Duplex.  Request/Reply 是缺省模式,即同步调用.在调用服务方法后需要等待服务的消 ...

  10. (原创)一个和c#中Lazy<T>类似的c++ Lazy<T>类的实现

    在.net 4.0中增加一个延迟加载类Lazy<T>,它的作用是实现按需延迟加载,也许很多人用过.一个典型的应用场景是这样的:当初始化某个对象时,该对象引用了一个大对象,需要创建,这个对象 ...