B树

即二叉搜索树:

1.所有非叶子结点至多拥有两个儿子(Left和Right);

2.所有结点存储一个关键字;

3.非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树;

如:

B树的搜索,从根结点开始,如果查询的关键字与结点的关键字相等,那么就命中;否则,如果查询关键字比结点关键字小,就进入左儿子;如果比结点关键字大,就进入右儿子;如果左儿子或右儿子的指针为空,则报告找不到相应的关键字;

如果B树的所有非叶子结点的左右子树的结点数目均保持差不多(平衡),那么B树的搜索性能逼近二分查找;但它比连续内存空间的二分查找的优点是,改变B树结构(插入与删除结点)不需要移动大段的内存数据,甚至通常是常数开销;

如:

但B树在经过多次插入与删除后,有可能导致不同的结构:

右边也是一个B树,但它的搜索性能已经是线性的了;同样的关键字集合有可能导致不同的树结构索引;所以,使用B树还要考虑尽可能让B树保持左图的结构,和避免右图的结构,也就是所谓的“平衡”问题;

实际使用的B树都是在原B树的基础上加上平衡算法,即“平衡二叉树”;如何保持B树结点分布均匀的平衡算法是平衡二叉树的关键;平衡算法是一种在B树中插入和删除结点的策略;

B-树

是一种多路搜索树(并不是二叉的):

1.定义任意非叶子结点最多只有M个儿子;且M>2;

2.根结点的儿子数为[2, M];

3.除根结点以外的非叶子结点的儿子数为[M/2, M];

4.每个结点存放至少M/2-1(取上整)和至多M-1个关键字;(至少2个关键字)

5.非叶子结点的关键字个数=指向儿子的指针个数-1;

6.非叶子结点的关键字:K[1], K[2], …, K[M-1];且K[i] < K[i+1];

7.非叶子结点的指针:P[1], P[2], …, P[M];其中P[1]指向关键字小于K[1]的子树,P[M]指向关键字大于K[M-1]的子树,其它P[i]指向关键字属于(K[i-1], K[i])的子树;

8.所有叶子结点位于同一层;

如:(M=3)

B-树的搜索,从根结点开始,对结点内的关键字(有序)序列进行二分查找,如果命中则结束,否则进入查询关键字所属范围的儿子结点;重复,直到所对应的儿子指针为空,或已经是叶子结点;

B-树的特性:

1.关键字集合分布在整颗树中;

2.任何一个关键字出现且只出现在一个结点中;

3.搜索有可能在非叶子结点结束;

4.其搜索性能等价于在关键字全集内做一次二分查找;

5.自动层次控制;

由于限制了除根结点以外的非叶子结点,至少含有M/2个儿子,确保了结点的至少利用率,其最底搜索性能为:

其中,M为设定的非叶子结点最多子树个数,N为关键字总数;

所以B-树的性能总是等价于二分查找(与M值无关),也就没有B树平衡的问题;

由于M/2的限制,在插入结点时,如果结点已满,需要将结点分裂为两个各占M/2的结点;删除结点时,需将两个不足M/2的兄弟结点合并;

B+树

B+树是B-树的变体,也是一种多路搜索树:

1.其定义基本与B-树同,除了:

2.非叶子结点的子树指针与关键字个数相同;

3.非叶子结点的子树指针P[i],指向关键字值属于[K[i], K[i+1])的子树(B-树是开区间);

5.为所有叶子结点增加一个链指针;

6.所有关键字都在叶子结点出现;

如:(M=3)

B+的搜索与B-树也基本相同,区别是B+树只有达到叶子结点才命中(B-树可以在非叶子结点命中),其性能也等价于在关键字全集做一次二分查找;

B+的特性:

1.所有关键字都出现在叶子结点的链表中(稠密索引),且链表中的关键字恰好是有序的;

2.不可能在非叶子结点命中;

3.非叶子结点相当于是叶子结点的索引(稀疏索引),叶子结点相当于是存储(关键字)数据的数据层;

4.更适合文件索引系统;

B*树

是B+树的变体,在B+树的非根和非叶子结点再增加指向兄弟的指针;

B*树定义了非叶子结点关键字个数至少为(2/3)*M,即块的最低使用率为2/3(代替B+树的1/2);

B+树的分裂:当一个结点满时,分配一个新的结点,并将原结点中1/2的数据复制到新结点,最后在父结点中增加新结点的指针;B+树的分裂只影响原结点和父结点,而不会影响兄弟结点,所以它不需要指向兄弟的指针;

B*树的分裂:当一个结点满时,如果它的下一个兄弟结点未满,那么将一部分数据移到兄弟结点中,再在原结点插入关键字,最后修改父结点中兄弟结点的关键字(因为兄弟结点的关键字范围改变了);如果兄弟也满了,则在原结点与兄弟结点之间增加新结点,并各复制1/3的数据到新结点,最后在父结点增加新结点的指针;

所以,B*树分配新结点的概率比B+树要低,空间使用率更高;

小结

B树:二叉树,每个结点只存储一个关键字,等于则命中,小于走左结点,大于走右结点;

B-树:多路搜索树,每个结点存储M/2到M个关键字,非叶子结点存储指向关键字范围的子结点;

所有关键字在整颗树中出现,且只出现一次,非叶子结点可以命中;

B+树:在B-树基础上,为叶子结点增加链表指针,所有关键字都在叶子结点中出现,非叶子结点作为叶子结点的索引;B+树总是到叶子结点才命中;

B*树:在B+树基础上,为非叶子结点也增加链表指针,将结点的最低利用率从1/2提高到2/3;

MyISAM引擎使用B+Tree作为索引结构,叶节点的data域存放的是数据记录的地址。下图是MyISAM索引的原理图:
这里设表一共有三列,假设我们以Col1为主键,则上图是一个MyISAM表的主索引(Primary key)示意。可以看出MyISAM的索引文件仅仅保存数据记录的地址。在MyISAM中,主索引和辅助索引(Secondary key)在结构上没有任何区别,只是主索引要求key是唯一的,而辅助索引的key可以重复。如果我们在Col2上建立一个辅助索引,则此索引的结构如下图所示:
 
同样也是一颗B+Tree,data域保存数据记录的地址。因此,MyISAM中索引检索的算法为首先按照B+Tree搜索算法搜索索引,如果指定的Key存在,则取出其data域的值,然后以data域的值为地址,读取相应数据记录。
MyISAM的索引方式也叫做“非聚集”的,之所以这么称呼是为了与InnoDB的聚集索引区分。
 
InnoDB索引实现
虽然InnoDB也使用B+Tree作为索引结构,但具体实现方式却与MyISAM截然不同。
第一个重大区别是InnoDB的数据文件本身就是索引文件。从上文知道,MyISAM索引文件和数据文件是分离的,索引文件仅保存数据记录的地址。而在InnoDB中,表数据文件本身就是按B+Tree组织的一个索引结构,这棵树的叶节点data域保存了完整的数据记录。这个索引的key是数据表的主键,因此InnoDB表数据文件本身就是主索引。
上图是InnoDB主索引(同时也是数据文件)的示意图,可以看到叶节点包含了完整的数据记录。这种索引叫做聚集索引。因为InnoDB的数据文件本身要按主键聚集,所以InnoDB要求表必须有主键(MyISAM可以没有),如果没有显式指定,则MySQL系统会自动选择一个可以唯一标识数据记录的列作为主键,如果不存在这种列,则MySQL自动为InnoDB表生成一个隐含字段作为主键,这个字段长度为6个字节,类型为长整形。
 
第二个与MyISAM索引的不同是InnoDB的辅助索引data域存储相应记录主键的值而不是地址。换句话说,InnoDB的所有辅助索引都引用主键作为data域。例如,下图为定义在Col3上的一个辅助索引:
这里以英文字符的ASCII码作为比较准则。聚集索引这种实现方式使得按主键的搜索十分高效,但是辅助索引搜索需要检索两遍索引:首先检索辅助索引获得主键,然后用主键到主索引中检索获得记录。
 
了解不同存储引擎的索引实现方式对于正确使用和优化索引都非常有帮助,例如知道了InnoDB的索引实现后,就很容易明白为什么不建议使用过长的字段作为主键,因为所有辅助索引都引用主索引,过长的主索引会令辅助索引变得过大。再例如,用非单调(可能是指“非递增”的意思)的字段作为主键在InnoDB中不是个好主意,因为InnoDB数据文件本身是一颗B+Tree,非单调(可能是指“非递增”的意思)的主键会造成在插入新记录时数据文件为了维持B+Tree的特性而频繁的分裂调整,十分低效,而使用自增字段作为主键则是一个很好的选择。
 

http://www.cnblogs.com/hustcat/archive/2009/10/28/1591648.html

http://blog.csdn.net/zuiaituantuan/article/details/5909334

http://www.codinglabs.org/html/theory-of-mysql-index.html

http://isky000.com/database/mysql_order_by_implement

http://dev.mysql.com/doc/refman/5.0/en/server-system-variables.html

http://www.docin.com/p-211669085.html

原文地址 http://blog.csdn.net/manesking/archive/2007/02/09/1505979.aspx

BTree,B-Tree,B+Tree,B*Tree的数据结构的更多相关文章

  1. What is the difference between a binary tree, a binary search tree, a B tree and a B+ tree?

    Binary Tree : It is a tree data structure in which each node has at most two children. As such there ...

  2. [Algorithm] Check if a binary tree is binary search tree or not

    What is Binary Search Tree (BST) A binary tree in which for each node, value of all the nodes in lef ...

  3. 12. Binary Tree Postorder Traversal && Binary Tree Preorder Traversal

    详见:剑指 Offer 题目汇总索引:第6题 Binary Tree Postorder Traversal            Given a binary tree, return the po ...

  4. 39. Recover Binary Search Tree && Validate Binary Search Tree

    Recover Binary Search Tree OJ: https://oj.leetcode.com/problems/recover-binary-search-tree/ Two elem ...

  5. Serialize a Binary Tree or a General Tree

    For a binary tree, preorder traversal may be enough. For example, _    /   \           /     /  \ 50 ...

  6. CF 570D. Tree Requests [dsu on tree]

    传送门 题意: 一棵树,询问某棵子树指定深度的点能否构成回文 当然不用dsu on tree也可以做 dsu on tree的话,维护当前每一个深度每种字母出现次数和字母数,我直接用了二进制.... ...

  7. LeetCode Javascript实现 258. Add Digits 104. Maximum Depth of Binary Tree 226. Invert Binary Tree

    258. Add Digits Digit root 数根问题 /** * @param {number} num * @return {number} */ var addDigits = func ...

  8. 102. Binary Tree Level Order Traversal (Tree, Queue; BFS)

    Given a binary tree, return the level order traversal of its nodes' values. (ie, from left to right, ...

  9. 199. Binary Tree Right Side View (Tree, Stack)

    Given a binary tree, imagine yourself standing on the right side of it, return the values of the nod ...

  10. Mecanim高级主题:Mecanim Blend Tree应用、Blend Tree 选项、复合Blend Tree

    一.Blend Tree介绍及应用 一个游戏动画的基本任务就是将两个或多个相似的动作混合.也许最广为人知的例子就是依照任务行动的速度将行走和跑动动画混合起来了.另一个例子就是角色在跑动中向左或向右转身 ...

随机推荐

  1. 新手小白Linux(Centos6.5)部署java web项目(mysql5.7安装及相关操作)

    一.安装 参考:https://dev.mysql.com/doc/refman/5.7/en/linux-installation-yum-repo.html # 检测系统中是否安装了mysql y ...

  2. 1.2.1 Elevator

    Elevator Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Problem De ...

  3. CentOS使用安装光盘建立本地软件源

    本实验的目的是使用CentOS的两张DVD安装光盘作为本地软件源,避免执行yum安装命令时每次都要从网络重新下载. 安装createrepo软件包 createrepo是制作软件源所需要的一个工具,默 ...

  4. (8)os和sys模块

    import sysprint(sys.argv)  #默认获取当前文件的路径 import os os.getcwd() 获取当前工作目录,即当前python脚本工作的目录路径 os.chdir(& ...

  5. CTF-练习平台-Misc之 隐写2

    二.隐写2 下载文件后解压,发现是一个png图片,依照老套路查看属性,没有发现 用WinHex打开,在图片文件中,修改图片宽度,将箭头处的A改为F,保存后打开图片 发现flag(对于png的文件格式详 ...

  6. JNI学习笔记_C调用Java

    一.笔记 1.C调用Java中的方法,参考jni.pdf pg97可以参考博文:http://blog.csdn.net/lhzjj/article/details/26470999步骤: a. 创建 ...

  7. hive 数据导出三种方式

    今天我们再谈谈Hive中的三种不同的数据导出方式.根据导出的地方不一样,将这些方式分为三种:(1).导出到本地文件系统:(2).导出到HDFS中:(3).导出到Hive的另一个表中.为了避免单纯的文字 ...

  8. HTML图片热区map area的用法

    <area>标记主要用于图像地图,通过该标记可以在图像地图中设定作用区域(又称为热点),这样当用户的鼠标移到指定的作用区域点击时,会自动链接到预先设定好的页面.其基本语法结构如下: < ...

  9. linux和mac使用virtualenv使用和安装

    virtualenv是python的三大神器之一,用于创建独立的python虚拟环境,多个python版本相互独立,互不影响,可以在一台电 脑上同时安装多个版本的python,而且不影响本机pytho ...

  10. tomcat源码阅读之SingleThreadModel

    一.接口简介: 实现了SingleThreadModel接口的servlet类只能保证在同一时刻,只有一个线程执行该servlet实例的service方法,在tomcat实现中会创建多个servlet ...