A - Black Box 优先队列
来源poj1442
Our Black Box represents a primitive database. It can save an integer array and has a special i variable. At the initial moment Black Box is empty and i equals 0. This Black Box processes a sequence of commands (transactions). There are two types of transactions:
ADD (x): put element x into Black Box;
GET: increase i by 1 and give an i-minimum out of all integers containing in the Black Box. Keep in mind that i-minimum is a number located at i-th place after Black Box elements sorting by non- descending.
Let us examine a possible sequence of 11 transactions:
Example 1
N Transaction i Black Box contents after transaction Answer
(elements are arranged by non-descending)
1 ADD(3) 0 3
2 GET 1 3 3
3 ADD(1) 1 1, 3
4 GET 2 1, 3 3
5 ADD(-4) 2 -4, 1, 3
6 ADD(2) 2 -4, 1, 2, 3
7 ADD(8) 2 -4, 1, 2, 3, 8
8 ADD(-1000) 2 -1000, -4, 1, 2, 3, 8
9 GET 3 -1000, -4, 1, 2, 3, 8 1
10 GET 4 -1000, -4, 1, 2, 3, 8 2
11 ADD(2) 4 -1000, -4, 1, 2, 2, 3, 8
It is required to work out an efficient algorithm which treats a given sequence of transactions. The maximum number of ADD and GET transactions: 30000 of each type.
Let us describe the sequence of transactions by two integer arrays:
A(1), A(2), ..., A(M): a sequence of elements which are being included into Black Box. A values are integers not exceeding 2 000 000 000 by their absolute value, M <= 30000. For the Example we have A=(3, 1, -4, 2, 8, -1000, 2).
u(1), u(2), ..., u(N): a sequence setting a number of elements which are being included into Black Box at the moment of first, second, ... and N-transaction GET. For the Example we have u=(1, 2, 6, 6).
The Black Box algorithm supposes that natural number sequence u(1), u(2), ..., u(N) is sorted in non-descending order, N <= M and for each p (1 <= p <= N) an inequality p <= u(p) <= M is valid. It follows from the fact that for the p-element of our u sequence we perform a GET transaction giving p-minimum number from our A(1), A(2), ..., A(u(p)) sequence.
Input
Input contains (in given order): M, N, A(1), A(2), ..., A(M), u(1), u(2), ..., u(N). All numbers are divided by spaces and (or) carriage return characters.
Output
Write to the output Black Box answers sequence for a given sequence of transactions, one number each line.
Sample Input
7 4
3 1 -4 2 8 -1000 2
1 2 6 6
Sample Output
3
3
1
2
按上面一行输入,然后输入下面的的次数之后,输出第i个,i是从1开始,输出一次就加1;用两个优先队列,一个从小到大v2,一个从大到小v1,如果输入的数,比v1.top()大就推入2,或者空也推入,否则推入v1,然后把v1.top推入v2;
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include <iomanip>
#include<cmath>
#include<float.h>
#include<string.h>
#include<algorithm>
#define sf scanf
#define pf printf
#define scf(x) scanf("%d",&x)
#define scff(x,y) scanf("%d%d",&x,&y)
#define prf(x) printf("%d\n",x)
#define mm(x,b) memset((x),(b),sizeof(x))
#include<vector>
#include<queue>
#include<map>
#define rep(i,a,n) for (int i=a;i<n;i++)
#define per(i,a,n) for (int i=a;i>=n;i--)
typedef long long ll;
const ll mod=1e9+7;
const double eps=1e-8;
const int inf=0x3f3f3f3f;
using namespace std;
const double pi=acos(-1.0);
const int N=3e4+5;
priority_queue <ll> v1;//从大到小排
priority_queue <ll,vector<ll>,greater<ll> > v2;
ll num[N];
int main()
{
ll n,m,c=1;
ll ans;
sf("%lld%lld",&n,&m);
rep(i,0,n)
sf("%lld",&num[i]);
int i=0;
while(m--)
{
scf(c);
for(;i<c;i++)
{
if(v1.empty()||v1.top()<num[i])
v2.push(num[i]);
else
{
v1.push(num[i]);
int temp=v1.top();
v2.push(temp);
v1.pop();
}
}
int ans=v2.top();
v2.pop();
v1.push(ans);
prf(ans);
}
return 0;
}
A - Black Box 优先队列的更多相关文章
- POJ 1442 Black Box -优先队列
优先队列..刚开始用蠢办法,经过一个vector容器中转,这么一来一回这么多趟,肯定超时啊. 超时代码如下: #include <iostream> #include <cstdio ...
- POJ 1442 Black Box(优先队列)
题目地址:POJ 1442 这题是用了两个优先队列,当中一个是较大优先.还有一个是较小优先. 让较大优先的队列保持k个.每次输出较大优先队列的队头. 每次取出一个数之后,都要先进行推断,假设这个数比較 ...
- poj 1442 Black Box(优先队列&Treap)
题目链接:http://poj.org/problem?id=1442 思路分析: <1>维护一个最小堆与最大堆,最大堆中存储最小的K个数,其余存储在最小堆中; <2>使用Tr ...
- Black Box《优先队列》
Description Our Black Box represents a primitive database. It can save an integer array and has a sp ...
- [ACM] POJ 1442 Black Box (堆,优先队列)
Black Box Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 7099 Accepted: 2888 Descrip ...
- Black Box--[优先队列 、最大堆最小堆的应用]
Description Our Black Box represents a primitive database. It can save an integer array and has a sp ...
- 【优先队列-求第Ki大的数】Black Box
Black Box Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 8637 Accepted: 3542 Descrip ...
- 优先队列 || POJ 1442 Black Box
给n个数,依次按顺序插入,第二行m个数,a[i]=b表示在第b次插入后输出第i小的数 *解法:写两个优先队列,q1里由大到小排,q2由小到大排,保持q2中有i-1个元素,那么第i小的元素就是q2的to ...
- Codeforces Round #570 (Div. 3) G. Candy Box (hard version) (贪心,优先队列)
题意:你有\(n\)个礼物,礼物有自己的种类,你想将它们按种类打包送人,但是打包的礼物数量必须不同(数量,与种类无关),同时,有些礼物你想自己留着,\(0\)表示你不想送人,问你在送出的礼物数量最大的 ...
随机推荐
- MySQL 数据库-索引注意事项
索引注意事项 (1)最左前缀原则 如果查询的时候,查询条件精确匹配索引的左边连续一列或几列,则可以命中索引. (2)避免where 子句中对字段施加函数,如to_date(create_tim ...
- 100本Python精品书籍(附pdf电子书下载)
51本Python精品书籍(附下载)链接: https://pan.baidu.com/s/19ydAKCFxM0plkepXMlqQLg 提取码: nnpe 400集python视频教程下载:链接: ...
- 如何确定一台linux主机是Linux (i386/i686)还是Linux (x86_64)
在下软件包的时候,往往会遇到一个选择: 假设自己的主机是Linux,那么Linux (i386/i686)和Linux (x86_64)究竟应该选哪一个呢? 针对当今的硬件而言,如果你主机的CPU是6 ...
- Linear SVM和LR的区别和联系
首先,SVM和LR(Logistic Regression)都是分类算法.SVM通常有4个核函数,其中一个是线性核,当使用线性核时,SVM就是Linear SVM,其实就是一个线性分类器,而LR也是一 ...
- C语言结构体变量私有化
操作系统 : CentOS7.3.1611_x64 gcc版本 :4.8.5 问题描述 C语言结构体定义中的变量默认是公有(Public)属性,如果实现成员变量的私有(Private)化? 解决方案 ...
- SuperObject生成示例
var jo,jEntity,jSubEntity: ISuperObject; jaOrder,jaEntity,jaSubEntity: ISuperObject; i,j,entityCount ...
- mysqldump详解之--master-data
在前一篇文章中,有提到mysqldump的--single-transaction参数.另外还有个很重要,也是运维中经常用到的参数:--master-data,网上很多关于MySQL不停机备份的实现都 ...
- Linux内核同步
Linux内核剖析 之 内核同步 主要内容 1.内核请求何时以交错(interleave)的方式执行以及交错程度如何. 2.内核所实现的基本同步机制. 3.通常情况下如何使用内核提供的同步机制. 内核 ...
- .net core 2.0 虚拟目录下载 Android Apk 等文件
当Android 文件 Apk 放在Asp.net core wwwroot 虚拟目录下面.访问是 404,设置Content-Type类型 app.UseStaticFiles(); //设置实际目 ...
- Cordova热更新cordova-hot-code-push
原文转载自:https://www.cnblogs.com/huangenai/p/7137475.html cordova-hot-code-push ,Cordova热代码推送插件提供了在应用程序 ...