BZOJ2716 [Violet]天使玩偶(cdq分治+树状数组)
非常裸的KD-tree。然而我没学啊。
考虑如何离线求一个点在平面中的曼哈顿最近点。
绝对值显得有点麻烦,于是把绝对值拆开分情况讨论一波。对于横坐标小于该点的,记录对于纵坐标的前缀x+y最大值和后缀x-y最大值;横坐标大于该点的,记录对于纵坐标的前缀y-x最大值和后缀-y-x最大值。
不过这样不太方便,不如直接给点翻转一下换个坐标。这样就可以只用考虑左下的情况了。
那么这个题,cdq分治就好了。注意树状数组不能有0下标,以及初值设为-inf。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 300010
#define M 1000010
#define inf 10000000
int n,m,p,tree[M],stk[N<<],top=;
struct data
{
int op,x,y,i,ans;
bool operator <(const data&a) const
{
return x<a.x||x==a.x&&i<a.i;
}
}q[N],t[N];
struct data2
{
int x,y;
bool operator <(const data2&a) const
{
return x<a.x;
}
}a[N];
bool cmp(const data&a,const data&b)
{
return a.i<b.i;
}
void update(int k,int x){while (k<=p){stk[++top]=k;tree[k]=max(tree[k],x);k+=k&-k;}}
int getans(int k){int s=-inf;while (k){s=max(s,tree[k]);k-=k&-k;}return s;}
void solve(int l,int r)
{
if (l==r) return;
int mid=l+r>>;
solve(l,mid);
solve(mid+,r);
int i=l,j=mid+;
for (int k=l;k<=r;k++)
if (q[i]<q[j]&&i<=mid||j>r) t[k]=q[i++];
else t[k]=q[j++];
for (int k=l;k<=r;k++) q[k]=t[k];
for (int k=l;k<=r;k++)
if (q[k].op==&&q[k].i<=mid) update(q[k].y,q[k].x+q[k].y);
else if (q[k].op==&&q[k].i>mid) q[k].ans=min(q[k].ans,q[k].x+q[k].y-getans(q[k].y));
while (top) tree[stk[top--]]=-inf;
}
void work()
{
memset(tree,,sizeof(tree));
sort(a,a+m+);sort(q,q+n+);
int j=;
for (int i=;i<=n;i++)
if (q[i].op==)
{
while (j<m&&a[j+].x<=q[i].x) j++,update(a[j].y,a[j].x+a[j].y);
q[i].ans=min(q[i].ans,q[i].x+q[i].y-getans(q[i].y));
}
memset(tree,,sizeof(tree));
sort(q,q+n+,cmp);
top=;
solve(,n);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj2716.in","r",stdin);
freopen("bzoj2716.out","w",stdout);
const char LL[]="%I64d";
#else
const char LL[]="%lld";
#endif
m=read(),n=read();
for (int i=;i<=m;i++) p=max(p,max(a[i].x=read()+,a[i].y=read()+)+);
for (int i=;i<=n;i++) q[i].op=read(),p=max(p,max(q[i].x=read()+,q[i].y=read()+)+),q[i].i=i,q[i].ans=inf;
work();
for (int i=;i<=m;i++) a[i].x=p-a[i].x;
for (int i=;i<=n;i++) q[i].x=p-q[i].x;
work();
for (int i=;i<=m;i++) a[i].y=p-a[i].y;
for (int i=;i<=n;i++) q[i].y=p-q[i].y;
work();
for (int i=;i<=m;i++) a[i].x=p-a[i].x;
for (int i=;i<=n;i++) q[i].x=p-q[i].x;
work();
sort(q+,q+n+,cmp);
for (int i=;i<=n;i++)
if (q[i].op==) printf("%d\n",q[i].ans);
return ;
}
BZOJ2716 [Violet]天使玩偶(cdq分治+树状数组)的更多相关文章
- BZOJ 2716: [Violet 3]天使玩偶( CDQ分治 + 树状数组 )
先cdq分治, 然后要处理点对答案的贡献, 可以以询问点为中心分成4个区域, 然后去掉绝对值(4种情况讨论), 用BIT维护就行了. --------------------------------- ...
- 【BZOJ4553】[Tjoi2016&Heoi2016]序列 cdq分治+树状数组
[BZOJ4553][Tjoi2016&Heoi2016]序列 Description 佳媛姐姐过生日的时候,她的小伙伴从某宝上买了一个有趣的玩具送给他.玩具上有一个数列,数列中某些项的值可能 ...
- BZOJ 1176 Mokia CDQ分治+树状数组
1176: [Balkan2007]Mokia Time Limit: 30 Sec Memory Limit: 162 MBSubmit: 1854 Solved: 821[Submit][St ...
- 【bzoj3262】陌上花开 CDQ分治+树状数组
题目描述 有n朵花,每朵花有三个属性:花形(s).颜色(c).气味(m),又三个整数表示.现要对每朵花评级,一朵花的级别是它拥有的美丽能超过的花的数量.定义一朵花A比另一朵花B要美丽,当且仅当Sa&g ...
- 【bzoj2225】[Spoj 2371]Another Longest Increasing CDQ分治+树状数组
题目描述 给定N个数对(xi, yi),求最长上升子序列的长度.上升序列定义为{(xi, yi)}满足对i<j有xi<xj且yi<yj. 样例输入 8 1 3 3 2 1 1 4 5 ...
- BZOJ 2683 简单题 cdq分治+树状数组
题意:链接 **方法:**cdq分治+树状数组 解析: 首先对于这道题,看了范围之后.二维的数据结构是显然不能过的.于是我们可能会考虑把一维排序之后还有一位上数据结构什么的,然而cdq分治却可以非常好 ...
- LOJ3146 APIO2019路灯(cdq分治+树状数组)
每个时刻都形成若干段满足段内任意两点可达.将其视为若干正方形.则查询相当于求历史上某点被正方形包含的时刻数量.并且注意到每个时刻只有O(1)个正方形出现或消失,那么求出每个矩形的出现时间和消失时间,就 ...
- BZOJ 4553 [Tjoi2016&Heoi2016]序列 ——CDQ分治 树状数组
考虑答案的构成,发现是一个有限制条件的偏序问题. 然后三个维度的DP,可以排序.CDQ.树状数组各解决一维. #include <map> #include <cmath> # ...
- BZOJ1176---[Balkan2007]Mokia (CDQ分治 + 树状数组)
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1176 CDQ第一题,warush了好久.. CDQ分治推荐论文: 1 <从<C ...
随机推荐
- SkylineDemoForWeb JavaScript二次开发示例代码
SkylineDemoForWeb JavaScript二次开发示例代码 http://files.cnblogs.com/files/yitianhe/SkylineDemoForWeb.zip
- angularjs的$window功能小练习
我们想在一个文本框输入一些文字,然后点击铵钮,alert()出来. <div ng-app="alertApp" ng-controller="alertContr ...
- Window环境下配置MySQL 5.6的主从复制
原文:Window环境下配置MySQL 5.6的主从复制 1.环境准备 Windows 7 64位 MySQL 5.6 主库:192.168.103.207 从库:192.168.103.208 2. ...
- P4099 [HEOI2013]SAO
P4099 [HEOI2013]SAO 贼板子有意思的一个题---我()竟然没看题解 有一张连成树的有向图,球拓扑序数量. 树形dp,设\(f[i][j]\)表示\(i\)在子树中\(i\)拓扑序上排 ...
- 值类型和引用类型的区别,struct和class的区别
C#值类型和引用类型 1.简单比较 值类型的变量直接存储数据,而引用类型的变量持有的是数据的引用,数据存储在数据堆中. 值类型(value type):byte,short,int,long,floa ...
- WPF没落了吗?
从08年开始一直到现在,碰到所有的项目,我个人经手的,都用wpf开发. wpf应该说一直没有火过,一直平平淡淡. 个人为什么一直执着用wpf,开始使用是因公司项目,做了两年wpf开发,后来换工作一直搜 ...
- mysql操作命令梳理(4)-中文乱码问题
在平时的mysql运维操作中,经常会碰到插入中文字段后出现乱码的情况,产生中文乱码的原因一般有:1)mysql的编码格式不对,是latin1编码.强烈推荐将mysql下的编码格式都改为utf8,因为它 ...
- 小程序encryptedData
准备知识: Base64编解码 AES算法.填充模式.偏移向量 session_key会话密钥,以及怎么存储和获取 以上3点对于理解解密流程非常重要. 根据官方文档,我梳理了大致的解密流程,如下: 小 ...
- Python 可调用对象
除了用户定义的函数,调用运算符(即 ())还可以应用到其他对象上.如果想判断对象能否调用,可以使用内置的 callable() 函数.Python 数据模型文档列出了 7 种可调用对象.(1)用户定义 ...
- 如何在css中设置按钮button中包含图片文字对齐方式
<el-button class="class-management style="line-heught">班级管理