BZOJ5317 JSOI2018部落战争(凸包)
即询问凸包是否有交。这显然可以直接求半平面交,但是复杂度O(q(n+m)),且没有什么优化空间。
更直接地表示,即相当于询问是否存在点a∈A,b∈B,使得a+d=b。移项,得到d=b-a。可以发现等式右边是一个闵可夫斯基和。求闵可夫斯基和只需要分别求出两个凸包,然后每次考虑ai+1+bi和ai+bi+1哪个将作为凸包中下一个点。将其求出后,只需要判断点是否在凸包内。二分找到上下边界即可。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<cassert>
using namespace std;
#define ll long long
#define vector point
#define N 200010
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,m,q;
const double eps=1E-;
struct point
{
int x,y;
vector operator +(const vector&a) const
{
return (vector){x+a.x,y+a.y};
}
vector operator -(const vector&a) const
{
return (vector){x-a.x,y-a.y};
}
ll operator *(const vector&a) const
{
return 1ll*x*a.y-1ll*y*a.x;
}
bool operator <(const point&a) const
{
return x<a.x||x==a.x&&y<a.y;
}
}a[N],b[N],c[N],d[N],e[N],f[N];
struct line
{
point a;vector p;
double f(int x){return a.y+(double)(x-a.x)/p.x*p.y;}
};
void makehull(point *hull,point *a,int &n)
{
sort(a+,a+n+);hull[]=a[];
int m=;
for (int i=;i<=n;i++)
{
while (m>&&(a[i]-hull[m-])*(hull[m]-hull[m-])>) m--;
hull[++m]=a[i];
}
for (int i=n-;i>=;i--)
{
while (m>&&(a[i]-hull[m-])*(hull[m]-hull[m-])>) m--;
hull[++m]=a[i];
}
n=m;
}
void merge(point *up,point *down,point *a,point *b,int &n,int &m)
{
int p=,u=,v=;up[]=a[]+b[];
while (u<n||v<m)
{
if (u==n) v++;
else if (v==m) u++;
else if ((a[u+]+b[v]-up[p])*(a[u]+b[v+]-up[p])>) u++;else v++;
while (p>&&(a[u]+b[v]-up[p-])*(up[p]-up[p-])>) p--;
up[++p]=a[u]+b[v];
}
for (int i=;i<=p;i++) if (up[i].x>up[i+].x) {n=i;break;}
for (int i=n;i<=p;i++) down[i-n+]=up[i];m=p-n+;
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj5317.in","r",stdin);
freopen("bzoj5317.out","w",stdout);
#endif
n=read(),m=read(),q=read();
for (int i=;i<=n;i++) a[i].x=read(),a[i].y=read();
for (int i=;i<=m;i++) b[i].x=-read(),b[i].y=-read();
makehull(c,a,n),makehull(d,b,m);
merge(e,f,c,d,n,m);reverse(f+,f+m+);
for (int i=;i<=q;i++)
{
int x=read(),y=read();
int u=lower_bound(e+,e+n+,(point){x,y})-e;
if (u==||u==n+||(line){e[u-],e[u]-e[u-]}.f(x)-eps>y) {printf("0\n");continue;}
u=lower_bound(f+,f+m+,(point){x,y})-f;
if (u==||u==m+||(line){f[u-],f[u]-f[u-]}.f(x)+eps<y) {printf("0\n");continue;}
printf("1\n");
}
return ;
}
BZOJ5317 JSOI2018部落战争(凸包)的更多相关文章
- 2019.02.21 bzoj5317: [Jsoi2018]部落战争(凸包+Minkowski和)
传送门 题意:qqq次询问把一个凸包整体加一个向量(x,y)(x,y)(x,y)之后是否与另外一个凸包相交. 思路:转化一下发现只要会求A+B={v⃗=a⃗+b⃗∣a⃗∈A,b⃗∈B}A+B=\{\v ...
- [BZOJ5317][JSOI2018]部落战争(闵可夫斯基和)
对于点集$A$,$B$,闵可夫斯基和$C=\{(x1+x2,y1+y2)|(x1,x2)\in A,(y1,y2)\in B\}$.由此可知,对于两个凸包$A$,$B$的闵可夫斯基和$C$满足,$C$ ...
- 【BZOJ5317】[JSOI2018]部落战争(凸包,闵可夫斯基和)
[BZOJ5317][JSOI2018]部落战争(凸包,闵可夫斯基和) 题面 BZOJ 洛谷 题解 很明显我们只需要两个凸包\(A,B\). 假设询问给定的方向向量是\(v\). 那么现在就是判断\( ...
- BZOJ 5317: [Jsoi2018]部落战争
传送门 写出式子,若存在 $a \in A$,$b \in B$,使得 $b+v=a$,那么此方案会产生冲突 即存在 $a \in A$,$b \in B$,使得 $v=a+(-b)$,设 $C=A+ ...
- 「JSOI2018」战争
「JSOI2018」战争 解题思路 我们需要每次求给一个凸包加上一个向量后是否与另外一个凸包相交,也就是说是否存在 \[ b\in B,(b+w)\in A \] 这里 \(A, B\) 表示凸包内部 ...
- BZOJ2150: 部落战争
题解: 把每个点拆成入点和出点,因为必须经过一次且只能经过一次.所以在两个点之间连一条上界=下界=1的边. 然后再s到每个入点连边,每个出点向t连边,点与点之间... 求最小流就可以过了... (感觉 ...
- BZOJ 2150: 部落战争 最大流
2150: 部落战争 Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/problem.php? ...
- BZOJ-2150部落战争(最小路径覆盖)
2150: 部落战争 Time Limit: 10 Sec Memory Limit: 259 MB Description lanzerb的部落在A国的上部,他们不满天寒地冻的环境,于是准备向A国 ...
- 【洛谷】4304:[TJOI2013]攻击装置【最大点独立集】【二分图】2172: [国家集训队]部落战争【二分图/网络流】【最小路径覆盖】
P4304 [TJOI2013]攻击装置 题目描述 给定一个01矩阵,其中你可以在0的位置放置攻击装置. 每一个攻击装置(x,y)都可以按照“日”字攻击其周围的8个位置(x-1,y-2),(x-2,y ...
随机推荐
- (转)60s快速分析Linux性能
之前在地铁上看到过一篇快速分析Linux系统性能的文章,觉得以后有用,今天就找了一下,转载过来. 原文出处:http://techblog.netflix.com/2015/11/linux-perf ...
- android 3.0+百度地图api地图如何移动到指定的经纬度处
由于百度地图api,2.0+和3.0+的改动比较大,api基本上被全换过了,有些同学可能2.0+的api使用的非常熟悉,但是更新到3.0+时,却会遇到一些小麻烦(由于api变了,你就需要重新学习它的a ...
- three.js - 渲染并展示三维对象
看结果: 看源码及解释: <!DOCTYPE html> <html lang="en"> <head> <meta charset=&q ...
- ArrayList源码中的两个值得注意的问题
1.“拖泥带水”的删除 测试代码: package com.demo; import java.util.ArrayList; public class TestArrayList { public ...
- BZOJ1185 HNOI2007 最小矩形覆盖 凸包、旋转卡壳
传送门 首先,肯定只有凸包上的点会限制这个矩形,所以建立凸包. 然后可以知道,矩形上一定有一条边与凸包上的边重合,否则可以转一下使得它重合,答案会更小. 于是沿着凸包枚举这一条边,通过旋转卡壳找到离这 ...
- Luogu3175 HAOI2015 按位或 min-max容斥、高维前缀和、期望
传送门 套路题 看到\(n \leq 20\),又看到我们求的是最后出现的位置出现的时间的期望,也就是集合中最大值的期望,考虑min-max容斥. 由\(E(max(S)) = \sum\limits ...
- WPF 实现主从的datagrid以及操作rowdetailtemplate 的方法
原文:WPF 实现主从的datagrid以及操作rowdetailtemplate 的方法 WPF 实现主从的datagrid以及操作rowdetailtemplate 的方法 最近在做 ...
- VS2015 搭建 Asp.net core 开发环境
1.首先你得装个vs2015 并且保证已经升级至 update3及以上(此处附上一个vs2015带up3的下载链接: ed2k://|file|cn_visual_studio_enterprise_ ...
- checkpoint-BLCR部署和测试(源码)
1. 概述2. 部署过程2.1 源码下载2.2 解压安装2.3 添加库环境2.4 插入内核模块3. 测试3.1 创建测试程序3.2 功能测试4. 参考博客 1. 概述 checkpoint 2. 部署 ...
- 分布式监控系统Zabbix3.4-针对MongoDB性能监控操作笔记
公司在IDC机房的一台服务器上部署了MongoDB,由于所存储的业务数据比较重要,所以对MongoDB的监控显得尤为重要!Zabbix监控MongoDB性能的原理:通过echo "db.se ...