pandas的resample重采样
Pandas中的resample,重新采样,是对原样本重新处理的一个方法,是一个对常规时间序列数据重新采样和频率转换的便捷的方法。
降采样:高频数据到低频数据
升采样:低频数据到高频数据
主要函数:resample()(pandas对象都会有这个方法)
resample方法的参数
参数 | 说明 |
---|---|
freq | 表示重采样频率,例如‘M’、‘5min’,Second(15) |
how=’mean’ | 用于产生聚合值的函数名或数组函数,例如‘mean’、‘ohlc’、np.max等,默认是‘mean’,其他常用的值由:‘first’、‘last’、‘median’、‘max’、‘min’ |
axis=0 | 默认是纵轴,横轴设置axis=1 |
fill_method = None | 升采样时如何插值,比如‘ffill’、‘bfill’等 |
closed = ‘right’ | 在降采样时,各时间段的哪一段是闭合的,‘right’或‘left’,默认‘right’ |
label= ‘right’ | 在降采样时,如何设置聚合值的标签,例如,9:30-9:35会被标记成9:30还是9:35,默认9:35 |
loffset = None | 面元标签的时间校正值,比如‘-1s’或Second(-1)用于将聚合标签调早1秒 |
limit=None | 在向前或向后填充时,允许填充的最大时期数 |
kind = None | 聚合到时期(‘period’)或时间戳(‘timestamp’),默认聚合到时间序列的索引类型 |
convention = None | 当重采样时期时,将低频率转换到高频率所采用的约定(start或end)。默认‘end’ |
首先创建一个Series,采样频率为一分钟。
>>> index = pd.date_range('1/1/2000', periods=9, freq='T')
>>> series = pd.Series(range(9), index=index)
>>> series
2000-01-01 00:00:00 0
2000-01-01 00:01:00 1
2000-01-01 00:02:00 2
2000-01-01 00:03:00 3
2000-01-01 00:04:00 4
2000-01-01 00:05:00 5
2000-01-01 00:06:00 6
2000-01-01 00:07:00 7
2000-01-01 00:08:00 8
Freq: T, dtype: int64
降低采样频率为三分钟
>>> series.resample('3T').sum()
2000-01-01 00:00:00 3
2000-01-01 00:03:00 12
2000-01-01 00:06:00 21
Freq: 3T, dtype: int64
降低采样频率为三分钟,但是每个标签使用right来代替left。请注意,bucket中值的用作标签。
>>> series.resample('3T', label='right').sum()
2000-01-01 00:03:00 3
2000-01-01 00:06:00 12
2000-01-01 00:09:00 21
Freq: 3T, dtype: int64
降低采样频率为三分钟,但是关闭right区间。
>>> series.resample('3T', label='right', closed='right').sum()
2000-01-01 00:00:00 0
2000-01-01 00:03:00 6
2000-01-01 00:06:00 15
2000-01-01 00:09:00 15
Freq: 3T, dtype: int64
增加采样频率到30秒
>>> series.resample('30S').asfreq()[0:5] #select first 5 rows
2000-01-01 00:00:00 0
2000-01-01 00:00:30 NaN
2000-01-01 00:01:00 1
2000-01-01 00:01:30 NaN
2000-01-01 00:02:00 2
Freq: 30S, dtype: float64
增加采样频率到30S,使用pad方法填充nan值。
>>> series.resample('30S').pad()[0:5]
2000-01-01 00:00:00 0
2000-01-01 00:00:30 0
2000-01-01 00:01:00 1
2000-01-01 00:01:30 1
2000-01-01 00:02:00 2
Freq: 30S, dtype: int64
增加采样频率到30S,使用bfill方法填充nan值。
>>> series.resample('30S').bfill()[0:5]
2000-01-01 00:00:00 0
2000-01-01 00:00:30 1
2000-01-01 00:01:00 1
2000-01-01 00:01:30 2
2000-01-01 00:02:00 2
Freq: 30S, dtype: int64
通过apply运行一个自定义函数
>>> def custom_resampler(array_like):
... return np.sum(array_like)+5
>>> series.resample('3T').apply(custom_resampler)
2000-01-01 00:00:00 8
2000-01-01 00:03:00 17
2000-01-01 00:06:00 26
Freq: 3T, dtype: int64
pandas的resample重采样的更多相关文章
- Python数据分析(三)pandas resample 重采样
下方是pandas中resample方法的定义,帮助文档http://pandas.pydata.org/pandas-docs/stable/timeseries.html#resampling中有 ...
- pandas之时间重采样笔记
周期由高频率转向低频率称为降采样:例如5分钟股票交易数据转换为日交易数据 相反,周期也可以由低频转向高频称为升采样 其他重采样:例如每周三(W-WED)转换为每周五(W-FRI) import pan ...
- pandas 时间序列resample
resample与groupby的区别:resample:在给定的时间单位内重取样groupby:对给定的数据条目进行统计 函数原型:DataFrame.resample(rule, how=None ...
- 重采样Resample 的一些研究记录。
最近项目有需要重采样算法,先找了一下,主流的就是几个开源算法,Speex / Opus / ffmpeg / sox 1.最早的事Speex,算法源自CCRMA(Center for Computer ...
- 03. Pandas 2| 时间序列
1.时间模块:datetime datetime模块,主要掌握:datetime.date(), datetime.datetime(), datetime.timedelta() 日期解析方法:pa ...
- Pandas v0.23.4手册汉化
Pandas手册汉化 此页面概述了所有公共pandas对象,函数和方法.pandas.*命名空间中公开的所有类和函数都是公共的. 一些子包是公共的,其中包括pandas.errors, pandas. ...
- Pandas之DataFrame——Part 2
''' [课程2.] 时间模块:datetime datetime模块,主要掌握:datetime.date(), datetime.datetime(), datetime.timedelta() ...
- pandas 之 datetime 初识
import numpy as np import pandas as pd 认识 Time series data is an impotant from of data in many diffe ...
- Pandas 时间序列处理
目录 Pandas 时间序列处理 1 Python 的日期和时间处理 1.1 常用模块 1.2 字符串和 datetime 转换 2 Pandas 的时间处理及操作 2.1 创建与基础操作 2.2 时 ...
随机推荐
- Android开源系列:仿网易Tab分类排序控件实现
前言 产品:网易新闻那个Tab排序好帅. 开发:哦~ 然后这个东东在几天后就出现了..... (PS:差不多一年没回来写博客了~~~~(>_<)~~~~,顺便把名字从 enjoy风铃 修改 ...
- Algolia使用教程 , 超详细傻子看都会
框架描述 发现网上Algolia这块的资料较少,就花了点时间从官网上整理了下,总结了几项常用的功能用法. 现在比较有名的Algolia提供了云搜索的服务.具体办法是我们将数据库的信息以JSON的格式上 ...
- MySQL中MyISAM和InnoDB两种主流存储引擎的特点
一.数据库引擎(Engines)的概念 MySQ5.6L的架构图: MySQL的存储引擎全称为(Pluggable Storage Engines)插件式存储引擎.MySQL的所有逻辑概念,包括SQL ...
- Java 使用 happen-before 规则实现共享变量的同步操作
前言 熟悉 Java 并发编程的都知道,JMM(Java 内存模型) 中的 happen-before(简称 hb)规则,该规则定义了 Java 多线程操作的有序性和可见性,防止了编译器重排序对程序结 ...
- 利用shell显示wordcount功能
Shell脚本编程是Linux系统最为核心的技术之一,它能够利用简单的命令来实现一些复杂的功能,同时,由于Linux提供了很多文本处理命令,如grep(grep family), tr, sed, ...
- 简单JAVA爬虫51Jobs
使用Jsoup工具,它是一个HTML解析器,可以直接直接解析某个地址或者HTML文件.还可 通过Dom,CSS以及类似JQuery的操作方法操作数据. Jsoup官方文档地址:https://jsou ...
- asp.net mvc之ActionResult
Web服务器接收到一个客户端请求以后,会对请求予以相应,而这个响应是通过Response来控制的, 但是在asp.net mvc 里,这部分的工作是由ActionResult来完成的, ActionR ...
- 命令查看当前电脑安装所有版本.NET Core SKD
dotnet --version 查看当前使用版本 dotnet --info 安装的所有版本 包括版本地址 也可用命令帮助 dotnet help
- java Spring 各版本jar包下载地址
http://repo.spring.io/simple/libs-release-local/org/springframework/
- CSS如何让不相等的字符上下对齐
最后效果: <div class="main"> <span style="font-size:12px;"><dl class= ...