Minimum Domino Rotations For Equal Row LT1007
In a row of dominoes, A[i]
and B[i]
represent the top and bottom halves of the i
-th domino. (A domino is a tile with two numbers from 1 to 6 - one on each half of the tile.)
We may rotate the i
-th domino, so that A[i]
and B[i]
swap values.
Return the minimum number of rotations so that all the values in A
are the same, or all the values in B
are the same.
If it cannot be done, return -1
.
Example 1:
Input: A = [2,1,2,4,2,2], B = [5,2,6,2,3,2]
Output: 2
Explanation:
The first figure represents the dominoes as given by A and B: before we do any rotations.
If we rotate the second and fourth dominoes, we can make every value in the top row equal to 2, as indicated by the second figure.
Example 2:
Input: A = [3,5,1,2,3], B = [3,6,3,3,4]
Output: -1
Explanation:
In this case, it is not possible to rotate the dominoes to make one row of values equal.
Idea 1. Bruteforce, swap or not swap(0-1), similar to subsets problem, typical backtracking
Time complexity: O(n2^n)
Space complexity: O(1)
class Solution {
private void swap(int[] A, int[] B, int pos) {
int temp = A[pos];
A[pos] = B[pos];
B[pos] = temp;
}
private boolean isEqual(int[] A) {
for(int i = 1; i < A.length; ++i) {
if(A[i] != A[i-1]) {
return false;
}
}
return true;
} private void helper(int[] A, int[] B, int pos, int currCnt, int[] cnt) {
if(pos == A.length) {
if(isEqual(A) || isEqual(B)) {
cnt[0] = Math.min(cnt[0], currCnt);
}
return;
} if(A[pos] != B[pos]) {
swap(A, B, pos);
helper(A, B, pos+1, currCnt+1, cnt);
swap(A, B, pos);
} helper(A, B, pos+1, currCnt, cnt);
}
public int minDominoRotations(int[] A, int[] B) {
int[] cnt = new int[1];
cnt[0] = Integer.MAX_VALUE;
helper(A, B, 0, 0, cnt);
return cnt[0] == Integer.MAX_VALUE? -1: cnt[0];
}
}
Idea 2. 有时候具体的题目要求更restrict, 反而简化了问题,这题要求all elments equal in A[i] or B[i], 如果我们知道交换后的结果数组的相同数,只能是四种:A-> { A[0], B[0] }, B-> { A[0], B[0] },
make A be all A[0] or B[0]
make B be all A[0] or B[0]
然后计算最小步数
Time complexity: O(n), 4 times scan
Space complexity: O(1)
class Solution {
int helper(int[] A, int[] B, int target) {
int cnt = 0;
for(int i = 0; i < A.length; ++i) {
if(A[i] != target) {
if(B[i] == target) {
++cnt;
}
else {
return Integer.MAX_VALUE;
}
}
}
return cnt;
}
public int minDominoRotations(int[] A, int[] B) {
int result = Math.min(helper(A, B, A[0]),
helper(A, B, B[0]));
result = Math.min(result,
Math.min(helper(B,A, B[0]),
helper(B, A, A[0])));
return result == Integer.MAX_VALUE? -1: result;
}
}
Idea 2.a 网上看到的,一次遍历同时计算A,B所需的步数
Time complexity: O(n), 2 times scan
Space comlexity: O(1)
class Solution {
private int helper(int[] A, int[] B, int target) {
int swapA = 0, swapB = 0;
for(int i = 0; i < A.length; ++i) {
if(A[i] != target && B[i] != target) {
return Integer.MAX_VALUE;
} if(A[i] != target){
++swapA;
}
else if(B[i] != target) {
++swapB;
}
} return Math.min(swapA, swapB);
}
public int minDominoRotations(int[] A, int[] B) {
int result = Math.min(helper(A, B, A[0]),
helper(A, B, B[0])); return result == Integer.MAX_VALUE? -1: result;
}
}
Idea 3. intersection set of {A{i}, B{i}}, 为了完成swap可以让数组相等,each position in either A or B should have the element, we can use set.retailAll, the steps = A.length - countA[A[i]]
Time complexity: O(n)
Space complexity: O(1), HashMap + HashSet
class Solution {
public int minDominoRotations(int[] A, int[] B) {
Set<Integer> candidates = new HashSet<>(Arrays.asList(1, 2, 3, 4, 5, 6));
int[] countA = new int[7];
int[] countB = new int[7]; for(int i = 0; i < A.length; ++i) {
++countA[A[i]];
++countB[B[i]];
candidates.retainAll(new HashSet<>(Arrays.asList(A[i], B[i])));
} for(int val: candidates) {
return Math.min(A.length - countA[val], A.length - countB[val]);
} return -1;
}
}
用数组代表set
class Solution {
public int minDominoRotations(int[] A, int[] B) {
int[] countA = new int[7];
int[] countB = new int[7];
int[] common = new int[7]; for(int i = 0; i < A.length; ++i) {
++countA[A[i]];
++countB[B[i]];
if(A[i] == B[i]) {
++common[A[i]];
}
} for(int i = 1; i < 7; ++i) {
if(countA[i] + countB[i] - common[i] >= A.length) {
return Math.min(A.length - countA[i], A.length - countB[i]);
}
} return -1;
}
}
Minimum Domino Rotations For Equal Row LT1007的更多相关文章
- [Swift]LeetCode1007. 行相等的最少多米诺旋转 | Minimum Domino Rotations For Equal Row
In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the i-th domino. (A domi ...
- 1007. Minimum Domino Rotations For Equal Row
In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the i-th domino. (A domi ...
- Leetcode: Minimum Domino Rotations For Equal Row
In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the i-th domino. (A domin ...
- 【leetcode】1007. Minimum Domino Rotations For Equal Row
题目如下: In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the i-th domino. ( ...
- 【LeetCode】1007. Minimum Domino Rotations For Equal Row 解题报告(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 遍历一遍 日期 题目地址:https://leetc ...
- [LC] 1007. Minimum Domino Rotations For Equal Row
In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the i-th domino. (A domi ...
- Swift LeetCode 目录 | Catalog
请点击页面左上角 -> Fork me on Github 或直接访问本项目Github地址:LeetCode Solution by Swift 说明:题目中含有$符号则为付费题目. 如 ...
- 【Leetcode周赛】从contest-121开始。(一般是10个contest写一篇文章)
Contest 121 (题号981-984)(2019年1月27日) 链接:https://leetcode.com/contest/weekly-contest-121 总结:2019年2月22日 ...
- [ACM_图论] Domino Effect (POJ1135 Dijkstra算法 SSSP 单源最短路算法 中等 模板)
Description Did you know that you can use domino bones for other things besides playing Dominoes? Ta ...
随机推荐
- MySQL 批量添加
自己封装的一个批量添加. $data 是一个二维数组.key对应是数据表的字段名: /** * 批量创建 * @param array $data * @return int $res 影响行 * @ ...
- [UE4]Tile View
一.Tile View也属于List View,Tile View以小方格的形式展示子控件. 二.Tile View.Entry Height.Tile View.Entry Width设置每个Til ...
- 查看Linux内置命令和外部命令
1. [hl@localhost ~]$ which cd /bin/cd [hl@localhost ~]$ type cd cd is a shell builtin
- DllImport使用
1.Dll引用路径 (1)exe运行程序所在的目录 (2)System32目录 (3)环境变量目录 (4)自定义路径,如:DllImport(@"C:\OJ\Bin\Judge.dll&qu ...
- JVM 符号引用与直接引用
Java类从加载到虚拟机内存中开始,到卸载出内存为止,它的整个生命周期包括,加载 ,验证 , 准备 , 解析 , 初始化 ,卸载 ,总共七个阶段.其中验证 ,准备 , 解析 统称为连接. ...
- android 开发 View _11_ xml动画
请大家尊重原创者版权,转载请标明出处:http://blog.csdn.net/harvic880925/article/details/39996643 谢谢! 一.概述 Android的anima ...
- 让UITableView的section header view不悬停的方法
当 UITableView 的 style 属性设置为 Plain 时,这个tableview的section header在滚动时会默认悬停在界面顶端.取消这一特性的方法有两种: 将 style 设 ...
- spring 之 类型转换 2
spring内置的转换器 在spring xml 文件中,配置属性的时候, 不管实际是 list 还是map ,还是Date, 或者原生的java 类型, 我们只能配置xml 给它们. 那么 spri ...
- win7、centos7 双系统安装总结
centos7安装过程 问题:TroubleShooting选项进入图形化界面安装才成功. win7恢复引导区 问题:安装完Centos后,win7的引导区不见了 具体恢复过程:http://www. ...
- RedHat 7.0更新升级openSSH7.4p1
由于目前服务器上ssh版本较低,存在安全漏洞,需要升级到最新版本. 系统版本:RedHat 7.0 旧openSSH版本:6.4p1 新openSSH版本:7.4p1 升级方式:源码安装 安装操作步骤 ...