In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the i-th domino.  (A domino is a tile with two numbers from 1 to 6 - one on each half of the tile.)

We may rotate the i-th domino, so that A[i] and B[i] swap values.

Return the minimum number of rotations so that all the values in A are the same, or all the values in B are the same.

If it cannot be done, return -1.

Example 1:

Input: A = [2,1,2,4,2,2], B = [5,2,6,2,3,2]
Output: 2
Explanation:
The first figure represents the dominoes as given by A and B: before we do any rotations.
If we rotate the second and fourth dominoes, we can make every value in the top row equal to 2, as indicated by the second figure.

Example 2:

Input: A = [3,5,1,2,3], B = [3,6,3,3,4]
Output: -1
Explanation:
In this case, it is not possible to rotate the dominoes to make one row of values equal.

Idea 1. Bruteforce, swap or not swap(0-1), similar to subsets problem, typical backtracking

Time complexity: O(n2^n)

Space complexity: O(1)

 class Solution {
private void swap(int[] A, int[] B, int pos) {
int temp = A[pos];
A[pos] = B[pos];
B[pos] = temp;
}
private boolean isEqual(int[] A) {
for(int i = 1; i < A.length; ++i) {
if(A[i] != A[i-1]) {
return false;
}
}
return true;
} private void helper(int[] A, int[] B, int pos, int currCnt, int[] cnt) {
if(pos == A.length) {
if(isEqual(A) || isEqual(B)) {
cnt[0] = Math.min(cnt[0], currCnt);
}
return;
} if(A[pos] != B[pos]) {
swap(A, B, pos);
helper(A, B, pos+1, currCnt+1, cnt);
swap(A, B, pos);
} helper(A, B, pos+1, currCnt, cnt);
}
public int minDominoRotations(int[] A, int[] B) {
int[] cnt = new int[1];
cnt[0] = Integer.MAX_VALUE;
helper(A, B, 0, 0, cnt);
return cnt[0] == Integer.MAX_VALUE? -1: cnt[0];
}
}

Idea 2. 有时候具体的题目要求更restrict, 反而简化了问题,这题要求all elments equal in A[i] or B[i], 如果我们知道交换后的结果数组的相同数,只能是四种:A-> { A[0], B[0] }, B-> { A[0], B[0] },

make A be all A[0] or B[0]

make B be all A[0] or B[0]

然后计算最小步数

Time complexity: O(n), 4 times scan

Space complexity: O(1)

 class Solution {
int helper(int[] A, int[] B, int target) {
int cnt = 0;
for(int i = 0; i < A.length; ++i) {
if(A[i] != target) {
if(B[i] == target) {
++cnt;
}
else {
return Integer.MAX_VALUE;
}
}
}
return cnt;
}
public int minDominoRotations(int[] A, int[] B) {
int result = Math.min(helper(A, B, A[0]),
helper(A, B, B[0]));
result = Math.min(result,
Math.min(helper(B,A, B[0]),
helper(B, A, A[0])));
return result == Integer.MAX_VALUE? -1: result;
}
}

Idea 2.a 网上看到的,一次遍历同时计算A,B所需的步数

Time complexity: O(n), 2 times scan

Space comlexity: O(1)

 class Solution {
private int helper(int[] A, int[] B, int target) {
int swapA = 0, swapB = 0;
for(int i = 0; i < A.length; ++i) {
if(A[i] != target && B[i] != target) {
return Integer.MAX_VALUE;
} if(A[i] != target){
++swapA;
}
else if(B[i] != target) {
++swapB;
}
} return Math.min(swapA, swapB);
}
public int minDominoRotations(int[] A, int[] B) {
int result = Math.min(helper(A, B, A[0]),
helper(A, B, B[0])); return result == Integer.MAX_VALUE? -1: result;
}
}

Idea 3. intersection set of {A{i}, B{i}}, 为了完成swap可以让数组相等,each position in either A or B should have the element, we can use set.retailAll, the steps = A.length - countA[A[i]]

Time complexity: O(n)

Space complexity: O(1), HashMap + HashSet

 class Solution {
public int minDominoRotations(int[] A, int[] B) {
Set<Integer> candidates = new HashSet<>(Arrays.asList(1, 2, 3, 4, 5, 6));
int[] countA = new int[7];
int[] countB = new int[7]; for(int i = 0; i < A.length; ++i) {
++countA[A[i]];
++countB[B[i]];
candidates.retainAll(new HashSet<>(Arrays.asList(A[i], B[i])));
} for(int val: candidates) {
return Math.min(A.length - countA[val], A.length - countB[val]);
} return -1;
}
}

用数组代表set

 class Solution {
public int minDominoRotations(int[] A, int[] B) {
int[] countA = new int[7];
int[] countB = new int[7];
int[] common = new int[7]; for(int i = 0; i < A.length; ++i) {
++countA[A[i]];
++countB[B[i]];
if(A[i] == B[i]) {
++common[A[i]];
}
} for(int i = 1; i < 7; ++i) {
if(countA[i] + countB[i] - common[i] >= A.length) {
return Math.min(A.length - countA[i], A.length - countB[i]);
}
} return -1;
}
}

Minimum Domino Rotations For Equal Row LT1007的更多相关文章

  1. [Swift]LeetCode1007. 行相等的最少多米诺旋转 | Minimum Domino Rotations For Equal Row

    In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the i-th domino.  (A domi ...

  2. 1007. Minimum Domino Rotations For Equal Row

    In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the i-th domino.  (A domi ...

  3. Leetcode: Minimum Domino Rotations For Equal Row

    In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the i-th domino. (A domin ...

  4. 【leetcode】1007. Minimum Domino Rotations For Equal Row

    题目如下: In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the i-th domino.  ( ...

  5. 【LeetCode】1007. Minimum Domino Rotations For Equal Row 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 遍历一遍 日期 题目地址:https://leetc ...

  6. [LC] 1007. Minimum Domino Rotations For Equal Row

    In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the i-th domino.  (A domi ...

  7. Swift LeetCode 目录 | Catalog

    请点击页面左上角 -> Fork me on Github 或直接访问本项目Github地址:LeetCode Solution by Swift    说明:题目中含有$符号则为付费题目. 如 ...

  8. 【Leetcode周赛】从contest-121开始。(一般是10个contest写一篇文章)

    Contest 121 (题号981-984)(2019年1月27日) 链接:https://leetcode.com/contest/weekly-contest-121 总结:2019年2月22日 ...

  9. [ACM_图论] Domino Effect (POJ1135 Dijkstra算法 SSSP 单源最短路算法 中等 模板)

    Description Did you know that you can use domino bones for other things besides playing Dominoes? Ta ...

随机推荐

  1. [蓝桥杯]PREV-7.历届试题_连号区间数

    问题描述 小明这些天一直在思考这样一个奇怪而有趣的问题: 在1~N的某个全排列中有多少个连号区间呢?这里所说的连号区间的定义是: 如果区间[L, R] 里的所有元素(即此排列的第L个到第R个元素)递增 ...

  2. problem: vue之数组元素中的数组类型值数据改变却无法在子组件视图更新问题

    问题:给父组件上的一个数组中的某个元素中的数组类型值,添加值后,数据没有在子组件上更新. 对元素添加值之后,vue的数据其实已经更新了并传给了子组件,子组件中没有立即更新. 那么这里有个问题,在子组件 ...

  3. Kafka 如何读取offset topic内容 (__consumer_offsets)(转发)

    原文  https://www.cnblogs.com/huxi2b/p/6061110.html 众所周知,由于Zookeeper并不适合大批量的频繁写入操作,新版Kafka已推荐将consumer ...

  4. js解决转义字符问题

    数据“\\s=7\\c=1\\j=1\\p=1”, 转义出来变成“\s=7\c=1\j=1\p=1” 结果:可以这样转换str=str.replace(/\\/g,'\\\\');

  5. 学习笔记 requests + BeautifulSoup

    第一步:requests get请求 # -*- coding:utf-8 -*- # 日期:2018/5/15 17:46 # Author:小鼠标 import requests url = &q ...

  6. java GC是在什么时候,对什么东西,做了什么事情

    面试题:“你能不能谈谈,java GC是在什么时候,对什么东西,做了什么事情?” 面试题目:地球人都知道,Java有个东西叫垃圾收集器,它让创建的对象不需要像c/cpp那样delete.free掉,你 ...

  7. spring boot 错误处理之深度历险

    今天终于把 boot 的异常处理完全研究透了: boot提供了很多错误的处理工作.默认情况下,我们会看到一个whiteLabel(白标)的页面. 这个可能不是我们所需.因此我们需要定制.我于是做了个深 ...

  8. Python实践练习:强口令检测

    题目: 写一个函数,它使用正则表达式,确保传入的口令字符串是强口令.强口令的定义是:长度不少于 8 个字符,同时包含大写和小写字符,至少有一位数字.你可能需要用多个正则表达式来测试该字符串,以保证它的 ...

  9. Open SuSE 安装Python3.6

    1. 下载Python3.6 tar包 去除Modules/Setup文件167行的注释 readline readline.c -lreadline -ltermcap 2. 下载readline- ...

  10. leetcode146

    public class LRUCache { ; ; long sernumbers; long SerNumbers { get { if (sernumbers <= long.MaxVa ...