Minimum Domino Rotations For Equal Row LT1007
In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the i-th domino. (A domino is a tile with two numbers from 1 to 6 - one on each half of the tile.)
We may rotate the i-th domino, so that A[i] and B[i] swap values.
Return the minimum number of rotations so that all the values in A are the same, or all the values in B are the same.
If it cannot be done, return -1.
Example 1:

Input: A = [2,1,2,4,2,2], B = [5,2,6,2,3,2]
Output: 2
Explanation:
The first figure represents the dominoes as given by A and B: before we do any rotations.
If we rotate the second and fourth dominoes, we can make every value in the top row equal to 2, as indicated by the second figure.
Example 2:
Input: A = [3,5,1,2,3], B = [3,6,3,3,4]
Output: -1
Explanation:
In this case, it is not possible to rotate the dominoes to make one row of values equal.
Idea 1. Bruteforce, swap or not swap(0-1), similar to subsets problem, typical backtracking
Time complexity: O(n2^n)
Space complexity: O(1)
class Solution {
private void swap(int[] A, int[] B, int pos) {
int temp = A[pos];
A[pos] = B[pos];
B[pos] = temp;
}
private boolean isEqual(int[] A) {
for(int i = 1; i < A.length; ++i) {
if(A[i] != A[i-1]) {
return false;
}
}
return true;
}
private void helper(int[] A, int[] B, int pos, int currCnt, int[] cnt) {
if(pos == A.length) {
if(isEqual(A) || isEqual(B)) {
cnt[0] = Math.min(cnt[0], currCnt);
}
return;
}
if(A[pos] != B[pos]) {
swap(A, B, pos);
helper(A, B, pos+1, currCnt+1, cnt);
swap(A, B, pos);
}
helper(A, B, pos+1, currCnt, cnt);
}
public int minDominoRotations(int[] A, int[] B) {
int[] cnt = new int[1];
cnt[0] = Integer.MAX_VALUE;
helper(A, B, 0, 0, cnt);
return cnt[0] == Integer.MAX_VALUE? -1: cnt[0];
}
}
Idea 2. 有时候具体的题目要求更restrict, 反而简化了问题,这题要求all elments equal in A[i] or B[i], 如果我们知道交换后的结果数组的相同数,只能是四种:A-> { A[0], B[0] }, B-> { A[0], B[0] },
make A be all A[0] or B[0]
make B be all A[0] or B[0]
然后计算最小步数
Time complexity: O(n), 4 times scan
Space complexity: O(1)
class Solution {
int helper(int[] A, int[] B, int target) {
int cnt = 0;
for(int i = 0; i < A.length; ++i) {
if(A[i] != target) {
if(B[i] == target) {
++cnt;
}
else {
return Integer.MAX_VALUE;
}
}
}
return cnt;
}
public int minDominoRotations(int[] A, int[] B) {
int result = Math.min(helper(A, B, A[0]),
helper(A, B, B[0]));
result = Math.min(result,
Math.min(helper(B,A, B[0]),
helper(B, A, A[0])));
return result == Integer.MAX_VALUE? -1: result;
}
}
Idea 2.a 网上看到的,一次遍历同时计算A,B所需的步数
Time complexity: O(n), 2 times scan
Space comlexity: O(1)
class Solution {
private int helper(int[] A, int[] B, int target) {
int swapA = 0, swapB = 0;
for(int i = 0; i < A.length; ++i) {
if(A[i] != target && B[i] != target) {
return Integer.MAX_VALUE;
}
if(A[i] != target){
++swapA;
}
else if(B[i] != target) {
++swapB;
}
}
return Math.min(swapA, swapB);
}
public int minDominoRotations(int[] A, int[] B) {
int result = Math.min(helper(A, B, A[0]),
helper(A, B, B[0]));
return result == Integer.MAX_VALUE? -1: result;
}
}
Idea 3. intersection set of {A{i}, B{i}}, 为了完成swap可以让数组相等,each position in either A or B should have the element, we can use set.retailAll, the steps = A.length - countA[A[i]]
Time complexity: O(n)
Space complexity: O(1), HashMap + HashSet
class Solution {
public int minDominoRotations(int[] A, int[] B) {
Set<Integer> candidates = new HashSet<>(Arrays.asList(1, 2, 3, 4, 5, 6));
int[] countA = new int[7];
int[] countB = new int[7];
for(int i = 0; i < A.length; ++i) {
++countA[A[i]];
++countB[B[i]];
candidates.retainAll(new HashSet<>(Arrays.asList(A[i], B[i])));
}
for(int val: candidates) {
return Math.min(A.length - countA[val], A.length - countB[val]);
}
return -1;
}
}
用数组代表set
class Solution {
public int minDominoRotations(int[] A, int[] B) {
int[] countA = new int[7];
int[] countB = new int[7];
int[] common = new int[7];
for(int i = 0; i < A.length; ++i) {
++countA[A[i]];
++countB[B[i]];
if(A[i] == B[i]) {
++common[A[i]];
}
}
for(int i = 1; i < 7; ++i) {
if(countA[i] + countB[i] - common[i] >= A.length) {
return Math.min(A.length - countA[i], A.length - countB[i]);
}
}
return -1;
}
}
Minimum Domino Rotations For Equal Row LT1007的更多相关文章
- [Swift]LeetCode1007. 行相等的最少多米诺旋转 | Minimum Domino Rotations For Equal Row
In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the i-th domino. (A domi ...
- 1007. Minimum Domino Rotations For Equal Row
In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the i-th domino. (A domi ...
- Leetcode: Minimum Domino Rotations For Equal Row
In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the i-th domino. (A domin ...
- 【leetcode】1007. Minimum Domino Rotations For Equal Row
题目如下: In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the i-th domino. ( ...
- 【LeetCode】1007. Minimum Domino Rotations For Equal Row 解题报告(Python)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 遍历一遍 日期 题目地址:https://leetc ...
- [LC] 1007. Minimum Domino Rotations For Equal Row
In a row of dominoes, A[i] and B[i] represent the top and bottom halves of the i-th domino. (A domi ...
- Swift LeetCode 目录 | Catalog
请点击页面左上角 -> Fork me on Github 或直接访问本项目Github地址:LeetCode Solution by Swift 说明:题目中含有$符号则为付费题目. 如 ...
- 【Leetcode周赛】从contest-121开始。(一般是10个contest写一篇文章)
Contest 121 (题号981-984)(2019年1月27日) 链接:https://leetcode.com/contest/weekly-contest-121 总结:2019年2月22日 ...
- [ACM_图论] Domino Effect (POJ1135 Dijkstra算法 SSSP 单源最短路算法 中等 模板)
Description Did you know that you can use domino bones for other things besides playing Dominoes? Ta ...
随机推荐
- ftp 和vsftp
内置sftp:https://blog.csdn.net/xinxin19881112/article/details/46831311 vsftp:http://blog.51cto.com/cui ...
- 常用JVM命令
查看当前所有jvm进程 ./jps -l -m ./jps -l -m -v 查看jvm进程内存堆使用情况 ./jstat -gc $pid 生成java虚拟机当前时刻的线程快照 jstack -l ...
- [ExcelHome]VLOOKUP的别样用法
请看题: 如上图所示,是某小区多名业主的信息表.如诸君所见,A列是业主的姓名,B列是一些有趣的信息,要求在C列,使用VLOOKUP函数,提取出B列的手机号码. B列的信息真是奇葩,除了手机号码,还有职 ...
- 性能测试day06_需求设计的学习(性能重中之重,思维方向永远重于工具)
今天接着来学习下性能知识,本来是应该先学习一下LR的用法的,不过听完云层大大的课之后,我感觉工具没有这一篇来的重要,我们知道性能有三大步骤:负载->监控->调优,但是在这个之前我们首先要搞 ...
- Requests将verify设置为False后取消警告的方式
方法一 import requests import urllib3 urllib3.disable_warnings() resp = requests.get('https://www.***.c ...
- rpc调用过程
在openstack中,各个组件之间的调用遵循RESTful风格,而组件内部各服务之间的相互调用采用rpc远程调用,比如nova-conductor和nova-compute rpc原理: 首先了解什 ...
- Hive表种map字段的查询取用
建表可以用 map<string,string> 查询时可以按照 aaa[bbb], aaa 是map字段名,bbb是其中的参数名,就可以取到这个参数的值了 当参数名bbb是string时 ...
- 转载:Opencv调整运行窗口图片的大小
本文来自:http://blog.csdn.net/cumtml/article/details/52807961 Opencv在运算时显示图片问题 总结在opencv中,图片显示的问题.简要解决图片 ...
- leetcode34
class Solution { public: vector<int> searchRange(vector<int>& nums, int target) { ve ...
- ElasicSearch(1)
ElasticSearch是一个基于Lucene的搜索服务器.它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口.Elasticsearch是用Java开发的,并作为Apach ...