目录

本系列是有关LaTeX的学习系列,共计19篇,本章节是第15篇。

前一篇:14LaTeX学习系列之---LaTeX的浮动体

后一篇:16LaTeX学习系列之---LaTeX数学公式的补充

总目录:19LaTeX学习系列之---LaTeX的总结

前言

写技术类的文档,免不了需要插入数学公式,今天我们学习的是在LaTeX里插入数学公式

(一)常用的数学公式命令

1.上下标

上标 a^{2x+3} \(a^{2x+3}\)
下标 a_{2x+3} \(a_{2x+3}\)

2.矢量

单符号矢量 \vec a \(\vec a\)
多符号矢量 \overrightarrow{xy} \(\overrightarrow{xy}\)

3.括号

小括号 () \(()\)
中括号 [] \([]\)
尖括号 \langle{}\rangle \(\langle{}\rangle\)
花括号 \{ \} \(\{ \}\)
适应中括号 \left( ……\right) \(\left( \right)\)
适应花括号 \left{……\right} \(\left\{ \right\}\)
上括号 \overbrace $\overbrace {1,2,3……} $
下括号 \underbrace $ \underbrace{1, 2, 3……} $

注:适应是指根据括号里面的内容,来确定括号的大小。

4.符号关系

加减 \pm \(\pm\)
\times \(\times\)
\div \(\div\)
不等于 \neq \(\neq\)
约等于 \approx \(\approx\)
恒等于 \equiv \(\equiv\)
大于等于 \geq \(\geq\)
小于等于 \leq \(\leq\)
相似 \sim \(\sim\)
正比于 \propto $\propto $
垂直 \perp $\perp $
弧度 \overset{\frown} {AB} $\overset{\frown} {AB} $
上划线 \overline{} \(\overline{1 2 3}\)

5.三角形符号

三角形符号 \Delta $\Delta $
夹角 \angle \(\angle{ABC}\)
角度 ^\circ $\sin60^\circ $
分度 '$ $ 59'$$

6.求和与累积

求累加 \sum \(\sum_{i=0}^{n}a\)
求极限 \lim_{x \to 0} \(\lim_{x \to 0}\)
求累积 \prod_{i=1}^n x_i \(\prod_{i=1}^n x_i\)
求导数 x\prime \(x\prime\)

7.积分与微分

求积分 \int_{0}^\infty{fxdx} \(\int_{0}^\infty{fxdx}\)
闭合曲线 \oint_{C} x^3, dx + 4y^2, dy $\oint_{C} x^3, dx + 4y^2, dy $
求二重积分 \iint_{D}^{W} , dx,dy \(\iint_{D}^{W} \, dx\,dy\)
求三重积分 \iiint_{E}^{V} , dx,dy,dz \(\iiint_{E}^{V} \, dx\,dy\,dz\)
微分符号 \nabla \(\nabla\)
求微分 \mathrm{d}x \(\mathrm{d}x\)
求偏微分 \partial x \(\partial x\)
求一阶微分 \dot x \(\dot x\)
求二阶微分 \ddot xy \(\ddot y\)

8.根号与分式

根号 \sqrt[x]{y} \(\sqrt[3]{2x+3}\)
分式 \frac {分子}{分母} \(\frac{2x+3}{3y-5}\)

注:在根号里,\sqrt[]{} 中的[]号是可选的,默认是开二次方。

9.集合

全部符号 \forall \(\forall\)
存在符号 \exists \(\exists\)
属于 \in $\in $
反属于 \ni \(\ni\)
不属于 \not\in $\not\in $
不反属于 \not\ni \(\not\ni\)
包含 \supset \(\supset\)
包含于 \subset $\subset $
包含有等于 \supseteq $\supseteq $
包含于有等于 \subseteq \(\subseteq\)
交集 \cap \(\cap\)
大号交集 \bigcap \(\bigcap\)
并集 \cup \(\cup\)
大号并集 \bigcup \(\bigcup\)
空集 \emptyset \(\emptyset\)
大号空集 \varbnothing \(\varnothing\)

10.逻辑与箭头符号

取反符号 \lnot q \(\lnot q\)
向左短箭头 \leftarrow $\leftarrow $
向右短箭头 \rightarrow $\rightarrow $
双向短箭头 \leftrightarrow $\leftrightarrow $
向左长箭头 \longleftarrow $\longleftarrow $
向右长箭头 \longrightarrow $\longrightarrow $
双向长箭头 \longleftrightarrow $\longleftrightarrow $
向左双短箭头 \Leftarrow $\Leftarrow $
向右双短箭头 \Rightarrow $\Rightarrow $
双向双短箭头 \Leftrightarrow $\Leftrightarrow $
向左双长箭头 \Longleftarrow $\Longleftarrow $
向右双长箭头 \Longrightarrow $\Longrightarrow $
双向双长箭头 \Longleftrightarrow $\Longleftrightarrow $

11.空格

小括号 a \ b \(a\ b\)
4个字符括号 a\quad b \(a\quad b\)

12.矩阵

(1)基本用法:

\begin{matrix}
0&1& 2 \\
4& 5& 6\\
7& 8 &9
\end{matrix}

$\begin{matrix}0&1& 2 \ 4& 5& 6\ 7& 8 &9 \end{matrix} $

只需要修改matrix环境就可以变为有边框矩阵

(2)普通用法

小括号框矩阵 pmatrix \(\begin{pmatrix}0&1& 2 \\ 4& 5& 6\\ 7& 8 &9 \end{pmatrix}\)
中括号框矩阵 bmatrix \(\begin{bmatrix}0&1& 2 \\ 4& 5& 6\\ 7& 8 &9 \end{bmatrix}\)
大括号框矩阵 Bmatrix \(\begin{Bmatrix}0&1& 2 \\ 4& 5& 6\\ 7& 8 &9 \end{Bmatrix}\)
单竖线框矩阵 vmatrix \(\begin{vmatrix}0&1& 2 \\ 4& 5& 6\\ 7& 8 &9 \end{vmatrix}\)
双竖线框矩阵 Vmatrix \(\begin{Vmatrix}0&1& 2 \\ 4& 5& 6\\ 7& 8 &9 \end{Vmatrix}\)

(3)省略号矩阵

  1. 横向省略 \cdots
  2. 竖向省略 \vdots
  3. 斜向省略 \ddots
$$\begin{bmatrix}
{a_{11}}&{a_{12}}&{\cdots}&{a_{1n}}\\
{a_{21}}&{a_{22}}&{\cdots}&{a_{2n}}\\
{\vdots}&{\vdots}&{\ddots}&{\vdots}\\
{a_{m1}}&{a_{m2}}&{\cdots}&{a_{mn}}\\
\end{bmatrix}$$

\[\begin{bmatrix}
{a_{11}}&{a_{12}}&{\cdots}&{a_{1n}}\\
{a_{21}}&{a_{22}}&{\cdots}&{a_{2n}}\\
{\vdots}&{\vdots}&{\ddots}&{\vdots}\\
{a_{m1}}&{a_{m2}}&{\cdots}&{a_{mn}}\\
\end{bmatrix}\]

(4)行内小矩阵

\left(
\begin{smallmatrix}
x & y \\ -y & x
\end{smallmatrix}
\right)

\[这是一个行内\left(
\begin{smallmatrix}
x & y \\ -y & x
\end{smallmatrix}
\right)小矩阵
\]

(5)array环境

\begin{array}{c|c}
1 & 2\\
\hline
0 & 1
\end{array}

\[\begin{array}{c|c}
1 & 2\\
\hline
0 & 1
\end{array}
\]

13.方程组

方程组以cases环境开头

$$\begin{cases}
a_1x+b_1y+c_1z=d_1\\
a_2x+b_2y+c_2z=d_2\\
a_3x+b_3y+c_3z=d_3\\
\end{cases}
$$

\[\begin{cases}
a_1x+b_1y+c_1z=d_1\\
a_2x+b_2y+c_2z=d_2\\
a_3x+b_3y+c_3z=d_3\\
\end{cases}​\]

14.希腊字母

  1. 总计个数:24个希腊字母表

  2. 历史原因:西方的数学家们在推导数学定理时,仍然沿用并不好写也不好记的希腊字母。所以一直沿用至今

  3. 大小写区分:大写字母的是其小写latex首字母大写后的形式

小写 大写 latex
\(\alpha\) \(\Alpha\) \alpha
\(\beta\) \(\Beta\) \beta
\(\gamma\) \(\Gamma\) \gamma
\(\delta\) \(\Delta\) \delta
\(\epsilon\) \(\Epsilon\) \epsilon
\(\zeta\) \(\Zeta\) \zeta
\(\nu\) \(\Nu\) \nu
\(\xi\) \(\Xi\) \xi
\(\omicron\) \(\Omicron\) \omicron
\(\pi\) \(\Pi\) \pi
\(\rho\) \(\Rho\) \rho
\(\sigma\) \(\Sigma\) \sigma
\(\eta\) \(\Eta\) \eta
\(\theta\) \(\Theta\) \theta
\(\iota\) \(\Iota\) \iota
\(\kappa\) \(\Kappa\) \kappa
\(\lambda\) \(\Lambda\) \lambda
\(\mu\) \(\Mu\) \mu
\(\tau\) \(\Tau\) \tau
\(\upsilon\) \(\Upsilon\) \upsilon
\(\phi\) \(\Phi\) \phi,(\(\varphi\):\varphi
\(\chi\) \(\Chi\) \chi
\(\psi\) \(\Psi\) \psi
\(\omega\) \(\Omega\) \omega

(二)基础知识

1.常用公式

数学公式分为行内公式与行间公式

  1. 行间公式:$$
  2. 带编号的行间公式:equation环境
  3. 不带编号的行间公式:\[ \]

2.行内公式:

  1. 一对美元符号 $$
  2. 小括号:\(.... \)
  3. mah环境:begin{math} ... end{math}

3.数学函数:

\(\sin{x}\) \sin{}
\(\cos{x}\) \cos{}
\(\tan{x}\) \tan{}
\(\arcsin{x}\) \arcsin{}
\(\arccos{x}\) \arccos{}
\(\arctan{x}\) \arctan{}
\(\ln{}\) \ln{}

3.行间公式

  1. 一对双美元符号 $$$$

  2. 中括号:\[ ... \]

  3. displaymath环境:begin{displaymath}... end{displaymath}

  4. 有编号的行间公式:begin{equation}... end{equation}

  5. 无编号的行间公式:begin{equation}... end{equation}

    注意:无编号公式,需要导入amsmath宏包

(三)实例:

1.源代码

% 导言区
\documentclass{article} \usepackage{ctex}
% equation* 与 矩阵所需的宏包
\usepackage{amsmath} % 正文区
\begin{document}
\tableofcontents
% 常用符号
% 行间公式:$$
% 带编号的行间公式:equation环境
% 不带编号的行间公式:\[ \] \section{简介}
\LaTeX 分为两种模式,文本模式与数学公式 \section{行内公式}
\subsection{美元符号}
交换律是 $a+b=b+a$ 如 $1+2=2+1$
\subsection{小括号}
交换律是 \(a+b=b+a\) 如 \(1+2=2+1\)
\subsection{math环境}
交换律是
\begin{math}
a+b=b+a
\end{math}

\begin{math}
1+2=2+1.
\end{math} \section{上下标}
\subsection{上标}
$3x^2-x+2$ $3x^{x+1}-x+2$
\subsection{下标}
$x_1+x_2=4$ $x_{x+1}+x_2=4$ \section{希腊字母}
$\alpha \beta \gamma \delta \epsilon $ \section{数学函数}
$\log$
$\sin$
$\cos$
$\arcsin$
$\arccos$
$\arctan$
$\ln$ $\sin^2x + \cos^2x = 1$ $\sqrt[2]{2x+3}$ $\sqrt[3]{2x-5}$ \section{分式}
\subsection{/}
$3/4 $ \subsection{\textbackslash frac\{\}\{\}}
$\frac{8}{5}$ \section{行间公式}
\subsection{双美元符号}
交换律是$$a+b=b+a $$
如$$1+2=2+1$$
\subsection{中括号}
交换律是
\[a+b=b+a\]
如\[1+2=2+1\] \subsection{displaymath环境}
交换律是
\begin{displaymath}
a+b=b+a\label{eq:no2}
\end{displaymath}

\begin{displaymath}
1+2=2+1
\end{displaymath} \subsection{自动编号}
交换律见式\ref{eq:no1}
\begin{equation}
a+b=b+a \label{eq:no1}
\end{equation}
如见公式\ref{eq:no2}
\begin{equation}
1+2=2+1
\end{equation} \subsection{不自动编号}
交换律见式
\begin{equation*}
a+b=b+a \label{eq:no3}
\end{equation*}
如见公式 \ref{eq:no3}
\begin{equation*}
1+2=2+1
\end{equation*} \section{矩阵的排版}
\subsection{矩阵的括号}
%无括号
\[
\begin{matrix}
0 & 1 \\
1 & 0
\end{matrix}
\] %小括号
\[
\begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix}
\] %中括号
\[
\begin{bmatrix}
0 & 1 \\
1 & 0
\end{bmatrix}
\] %大括号
\[
\begin{Bmatrix}
0 & 1 \\
1 & 0
\end{Bmatrix}
\] % 单竖线
\[
\begin{vmatrix}
0 & 1 \\
1 & 0
\end{vmatrix}
\] %双竖线
\[
\begin{Vmatrix}
0 & 1 \\
1 & 0
\end{Vmatrix}
\] \subsection{矩阵的省略号}
%\dots 横向省略号
%\vdots 竖向省略号
%\ddots 斜向省略号
\[
A = \begin{bmatrix}
a_{11} & \dots & a_{1n}\\
\vdots& \ddots & \vdots \\
0 & \dots & a_{nn}
\end{bmatrix}_{n \times n}
\] \subsection{行内小矩阵}
复数可用矩阵
\begin{math}
\left(
\begin{smallmatrix}
x & y \\ -y & x
\end{smallmatrix}
\right)
\end{math}
来表示 \subsection{array环境}
\[
\begin{array}{c|c}
1 & 2\\
\hline
0 & 1
\end{array}
\] \end{document}

3.输出效果

本系列是有关LaTeX的学习系列,共计19篇,本章节是第15篇。

前一篇:14LaTeX学习系列之---LaTeX的浮动体

后一篇:16LaTeX学习系列之---LaTeX数学公式的补充

总目录:19LaTeX学习系列之---LaTeX的总结

作者:Mark

日期:2019/03/06 周三

15LaTeX学习系列之---LaTeX里插入数学公式的更多相关文章

  1. 16LaTeX学习系列之---LaTeX数学公式的补充

    目录 目录 前言 (一)知识点说明 1.基础细节 2.gather环境 3.align环境 4.split环境 5.cases环境 (二)实例 1.源代码 2.输出效果 目录 本系列是有关LaTeX的 ...

  2. 19LaTeX学习系列之---LaTeX的总结

    目录 目录 前言 (一)本系列的章节目录 (二)快速温习LaTeX 1.介绍 2.源文件结构 3.文档的结构 4.字体的设置 5.图片的插入 6.表格的插入 7.数学公式的插入 8.交叉引用与浮动体 ...

  3. 14LaTeX学习系列之---LaTeX的浮动体

    目录 目录 前言 (一)浮动体的基础知识 1.环境及语法 2.允许位置的参数 3.其他命令 (二)实例: 1.源代码 2.输出效果 (三)浮动体的高级操作 1.标题的控制 2.并排与子图表 3.绕排 ...

  4. 13LaTeX学习系列之---LaTeX插入表格

    目录 目录 前言 (一)插入表格的基础语法 1.说明 2.源代码 3.输出效果 (二)查看文档 目录 本系列是有关LaTeX的学习系列,共计19篇,本章节是第13篇. 前一篇:12LaTeX学习系列之 ...

  5. 12LaTeX学习系列之---LaTex的图片插入

    目录 目录 前言 (一)插图的基本语法 (二)插入的基本设置 1.说明: 2.源代码: 3.输出效果 (三)查看文档 目录 本系列是有关LaTeX的学习系列,共计19篇,本章节是第12篇. 前一篇:1 ...

  6. 11LaTeX学习系列之---LaTeX的特殊字符

    目录 目录 前言 (一)源代码 (二)输出效果 目录 本系列是有关LaTeX的学习系列,共计19篇,本章节是第11篇. 前一篇:10LaTeX学习系列之---Latex的文档结构 后一篇:12LaTe ...

  7. 17LaTeX学习系列之---LaTeX的版面设计

    目录 目录 前言 (一)基础知识 1.纸张大小的设置 2.边距的设置 3.页眉页脚的设置 4.横分割线的设置 5.行间距与段间距 (二)实例 1.源代码 2.输出效果: 目录 本系列是有关LaTeX的 ...

  8. 18LaTeX学习系列之---LaTeX的参考文献

    目录 目录 前言 (一)简单的参考文献 1.说明 2.源代码 3.输出效果 (二)以文件管理的方式 1.说明: 2.源代码: 3.输出效果 (三)直接从源网站获取 1.说明 2.操作 目录 本系列是有 ...

  9. 10LaTeX学习系列之---Latex的文档结构

    目录 目录 前言 (一)对于Ctex宏包中的文档结构 1.说明 2.源代码 3.输出效果 4.技巧 (二)对于ctexart的文档结构 1.说明 2.源代码 3.输出效果 (三)对于ctexbook的 ...

随机推荐

  1. Maven_1 安装配置

    所需工具 : JDK 1.8 Maven 3.3.9 Windows 7 下载Maven 3.3.9  http://maven.apache.org/download.cgi  首先要先安装JDK. ...

  2. (转)MySQL触发器trigger示例详解

    一.什么是触发器 触发器是与表有关的数据库对象,在满足定义条件时触发,并执行触发器中定义的语句集合.触发器的这种特性可以协助应用在数据库端确保数据的完整性. 举个例子,比如你现在有两个表[用户表]和[ ...

  3. 网络基础知识-TCP/IP协议各层详解

    TCP/IP简介 虽然大家现在对互联网很熟悉,但是计算机网络的出现比互联网要早很多. 计算机为了联网,就必须规定通信协议,早期的计算机网络,都是由各厂商自己规定一套协议,IBM.Apple和Micro ...

  4. JavaWeb学习(二十三)———Filter(过滤器)

    一.Filter简介 Filter也称之为过滤器,它是Servlet技术中最激动人心的技术,WEB开发人员通过Filter技术,对web服务器管理的所有web资源:例如Jsp, Servlet, 静态 ...

  5. 记一次IDEA编译器调优

    前言: 我们知道,IDEA是用Java写的,那么他肯定也存在虚拟机的调优的问题,那么今天我们就对它进行开刀. 下面是默认参数 位置在:C:\Program Files\JetBrains\Intell ...

  6. [CF438E] 小朋友和二叉树

    Description 给定一个整数集合 \(c\),对于每个 \(i\in[1,m]\),求有多少种不同的带点权的二叉树使得这棵树点权和为 \(i\) 并且顶点的点权全部在集合 \(c\) 中.\( ...

  7. [转]Ionic国际化解决方案

    本文转自:http://www.cnblogs.com/crazyprogrammer/p/7904436.html 1.     核心内容 使用Angular2的国际化(i18n)库:ngx-tra ...

  8. 【手记】解决excel无法设置单元格颜色且界面怪异+桌面图标文字老有色块等问题

    注:问题是在XP上遇到的,不知道是否适用其它系统 问题现象 excel 2010成这样了: 关键是设置不了单元格颜色,无论是文字颜色还是背景色都设置不了,设了没变化.同时会发现桌面图标的文字总有底色: ...

  9. 【测试记录】EF插入查询性能

    介绍     背景什么就不提了,无外乎出现了大数据需要处理.简单的说就是我测试了EF正常的插入以及一个优化小方式而已,然后做了查询记录.其余没有什么,写这篇只是为了记录结果方便以后数据参考吧. 代码介 ...

  10. SVN多分支开发模式V1.0.1

    1目的 规范开发模式过程,指导项目研发.质控测试.DevOps的相关活动. 2适用范围 本规范的作用范围是为互联网软件产品相关项目开发模式的管理过程. (1)   对项目团队中研发人员在开发模式过程中 ...