multiprocess模块

multiprocess不是一个模块而是python中一个操作、管理进程的包。 之所以叫multi是取自multiple的多功能的意思,在这个包中几乎包含了和进程有关的所有子模块。由于提供的子模块非常多,为了方便大家归类记忆,我将这部分大致分为四个部分:创建进程部分,进程同步部分,进程池部分,进程之间数据共享。

multiprocess.process模块

process模块是一个创建进程的模块,借助这个模块,就可以完成进程的创建。

Process([group [, target [, name [, args [, kwargs]]]]]),由该类实例化得到的对象,表示一个子进程中的任务(尚未启动)

强调:
1. 需要使用关键字的方式来指定参数
2. args指定的为传给target函数的位置参数,是一个元组形式,必须有逗号 参数介绍:
1 group参数未使用,值始终为None
2 target表示调用对象,即子进程要执行的任务
3 args表示调用对象的位置参数元组,args=(1,2,'egon',)
4 kwargs表示调用对象的字典,kwargs={'name':'egon','age':18}
5 name为子进程的名称
1 p.start():启动进程,并调用该子进程中的p.run()
2 p.run():进程启动时运行的方法,正是它去调用target指定的函数,我们自定义类的类中一定要实现该方法
3 p.terminate():强制终止进程p,不会进行任何清理操作,如果p创建了子进程,该子进程就成了僵尸进程,使用该方法需要特别小心这种情况。如果p还保存了一个锁那么也将不会被释放,进而导致死锁
4 p.is_alive():如果p仍然运行,返回True
5 p.join([timeout]):主线程等待p终止(强调:是主线程处于等的状态,而p是处于运行的状态)。timeout是可选的超时时间,需要强调的是,p.join只能join住start开启的进程,而不能join住run开启的进程

方法

1 p.daemon:默认值为False,如果设为True,代表p为后台运行的守护进程,当p的父进程终止时,p也随之终止,并且设定为True后,p不能创建自己的新进程,必须在p.start()之前设置
2 p.name:进程的名称
3 p.pid:进程的pid
4 p.exitcode:进程在运行时为None、如果为–N,表示被信号N结束(了解即可)
5 p.authkey:进程的身份验证键,默认是由os.urandom()随机生成的32字符的字符串。这个键的用途是为涉及网络连接的底层进程间通信提供安全性,这类连接只有在具有相同的身份验证键时才能成功(了解即可)

属性的介绍

在Windows操作系统中由于没有fork(linux操作系统中创建进程的机制),在创建子进程的时候会自动 import 启动它的这个文件,而在 import 的时候又执行了整个文件。因此如果将process()直接写在文件中就会无限递归创建子进程报错。所以必须把创建子进程的部分使用if __name__ ==‘__main__’ 判断保护起来,import 的时候  ,就不会递归运行了。

使用process模块创建进程

在一个python进程中开启子进程,start方法和并发效果。

import time
from multiprocessing import Process def f(name):
print('hello', name)
time.sleep(1) if __name__ == '__main__':
p_lst = []
for i in range(5):
p = Process(target=f, args=('bob',))
p.start()
p_lst.append(p)
p.join()
# [p.join() for p in p_lst]
print('父进程在执行')

例子

守护进程

会随着主进程的结束而结束。

主进程创建守护进程

  其一:守护进程会在主进程代码执行结束后就终止

  其二:守护进程内无法再开启子进程,否则抛出异常:AssertionError: daemonic processes are not allowed to have children

注意:进程之间是互相独立的,主进程代码运行结束,守护进程随即终止

import os
import time
from multiprocessing import Process class Myprocess(Process):
def __init__(self,person):
super().__init__()
self.person = person
def run(self):
print(os.getpid(),self.name)
print('%s正在和女主播聊天' %self.person) p=Myprocess('哪吒')
p.daemon=True #一定要在p.start()前设置,设置p为守护进程,禁止p创建子进程,并且父进程代码执行结束,p即终止运行
p.start()
time.sleep(10) # 在sleep时查看进程id对应的进程ps -ef|grep id
print('主')

守护进程的启动

socket聊天并发实例

from socket import *
from multiprocessing import Process
server=socket(AF_INET,SOCK_STREAM)
server.setsockopt(SOL_SOCKET,SO_REUSEADDR,1)
server.bind(('127.0.0.1',8080))
server.listen(5)
def talk(conn,client_addr):
while True:
try:
msg=conn.recv(1024)
if not msg:break
conn.send(msg.upper())
except Exception:
break
if __name__ == '__main__': #windows下start进程一定要写到这下面
while True:
conn,client_addr=server.accept()
p=Process(target=talk,args=(conn,client_addr))
p.start()

server

from socket import *
client=socket(AF_INET,SOCK_STREAM)
client.connect(('127.0.0.1',8080))
while True:
msg=input('>>: ').strip()
if not msg:continue
client.send(msg.encode('utf-8'))
msg=client.recv(1024)
print(msg.decode('utf-8'))

client

多进程中的其他方法

from multiprocessing import Process
import time
import random class Myprocess(Process):
def __init__(self,person):
self.name=person
super().__init__() def run(self):
print('%s正在和网红脸聊天' %self.name)
time.sleep(random.randrange(1,5))
print('%s还在和网红脸聊天' %self.name) p1=Myprocess('哪吒')
p1.start() p1.terminate()#关闭进程,不会立即关闭,所以is_alive立刻查看的结果可能还是存活
print(p1.is_alive()) #结果为True print('开始')
print(p1.is_alive()) #结果为False

例子

进程同步

进程同步(multiprocess.Lock、multiprocess.Semaphore、multiprocess.Event)

锁 —— multiprocess.Lock

多个任务可以同时在几个进程中并发处理,他们之间的运行没有顺序,一旦开启也不受我们控制。尽管并发编程让我们能更加充分的利用IO资源,但是也给我们带来了新的问题。

当多个进程使用同一份数据资源的时候,就会引发数据安全或顺序混乱问题。

#文件db的内容为:{"count":5}
#注意一定要用双引号,不然json无法识别
#并发运行,效率高,但竞争写同一文件,数据写入错乱
from multiprocessing import Process,Lock
import time,json,random
def search():
dic=json.load(open('db'))
print('\033[43m剩余票数%s\033[0m' %dic['count']) def get():
dic=json.load(open('db'))
time.sleep(random.random()) #模拟读数据的网络延迟
if dic['count'] >0:
dic['count']-=1
time.sleep(random.random()) #模拟写数据的网络延迟
json.dump(dic,open('db','w'))
print('\033[32m购票成功\033[0m')
else:
print('\033[31m购票失败\033[0m') def task(lock):
search()
lock.acquire()
get()
lock.release() if __name__ == '__main__':
lock = Lock()
for i in range(100): #模拟并发100个客户端抢票
p=Process(target=task,args=(lock,))
p.start()

抢票

#加锁可以保证多个进程修改同一块数据时,同一时间只能有一个任务可以进行修改,即串行的修改,没错,速度是慢了,但牺牲了速度却保证了数据安全。
虽然可以用文件共享数据实现进程间通信,但问题是:
1.效率低(共享数据基于文件,而文件是硬盘上的数据)
2.需要自己加锁处理
#因此我们最好找寻一种解决方案能够兼顾:1、效率高(多个进程共享一块内存的数据)2、帮我们处理好锁问题。这就是mutiprocessing模块为我们提供的基于消息的IPC通信机制:队列和管道。
队列和管道都是将数据存放于内存中
队列又是基于(管道+锁)实现的,可以让我们从复杂的锁问题中解脱出来,
我们应该尽量避免使用共享数据,尽可能使用消息传递和队列,避免处理复杂的同步和锁问题,而且在进程数目增多时,往往可以获得更好的可获展性。

信号量 —— multiprocess.Semaphore(了解)

from multiprocessing import Process,Semaphore
import time,random
def go_ktv(sem,user):
sem.acquire()
print('%s 占到一间ktv小屋' %user)
time.sleep(random.randint(0,3)) #模拟每个人在ktv中待的时间不同
sem.release()
if __name__ == '__main__':
sem=Semaphore(4)
p_l=[]
for i in range(13):
p=Process(target=go_ktv,args=(sem,'user%s' %i,))
p.start()
p_l.append(p) for i in p_l:
i.join()
print('============》')

例子

信号量的实现机制:计数器+锁实现

事件 —— multiprocess.Event(了解)

from multiprocessing import Process, Event
import time, random def car(e, n):
while True:
if not e.is_set(): # 进程刚开启,is_set()的值是Flase,模拟信号灯为红色
print('\033[31m红灯亮\033[0m,car%s等着' % n)
e.wait() # 阻塞,等待is_set()的值变成True,模拟信号灯为绿色
print('\033[32m车%s 看见绿灯亮了\033[0m' % n)
time.sleep(random.randint(3, 6))
if not e.is_set(): #如果is_set()的值是Flase,也就是红灯,仍然回到while语句开始
continue
print('车开远了,car', n)
break def police_car(e, n):
while True:
if not e.is_set():# 进程刚开启,is_set()的值是Flase,模拟信号灯为红色
print('\033[31m红灯亮\033[0m,car%s等着' % n)
e.wait(0.1) # 阻塞,等待设置等待时间,等待0.1s之后没有等到绿灯就闯红灯走了
if not e.is_set():
print('\033[33m红灯,警车先走\033[0m,car %s' % n)
else:
print('\033[33;46m绿灯,警车走\033[0m,car %s' % n)
break def traffic_lights(e, inverval):
while True:
time.sleep(inverval)
if e.is_set():
print('######', e.is_set())
e.clear() # ---->将is_set()的值设置为False
else:
e.set() # ---->将is_set()的值设置为True
print('***********',e.is_set()) if __name__ == '__main__':
e = Event()
for i in range(10):
p=Process(target=car,args=(e,i,)) # 创建是个进程控制10辆车
p.start() for i in range(5):
p = Process(target=police_car, args=(e, i,)) # 创建5个进程控制5辆警车
p.start()
t = Process(target=traffic_lights, args=(e, 10)) # 创建一个进程控制红绿灯
t.start() print('============》')

红绿灯例子

 

在python程序中的进程操作的更多相关文章

  1. 在Python程序中的进程操作,multiprocess.Process模块

    在python程序中的进程操作 之前我们已经了解了很多进程相关的理论知识,了解进程是什么应该不再困难了,刚刚我们已经了解了,运行中的程序就是一个进程.所有的进程都是通过它的父进程来创建的.因此,运行起 ...

  2. python 全栈开发,Day38(在python程序中的进程操作,multiprocess.Process模块)

    昨日内容回顾 操作系统纸带打孔计算机批处理 —— 磁带 联机 脱机多道操作系统 —— 极大的提高了CPU的利用率 在计算机中 可以有超过一个进程 进程遇到IO的时候 切换给另外的进程使用CPU 数据隔 ...

  3. Python程序中的进程操作--—--开启多进程

    Python程序中的进程操作-----开启多进程 之前我们已经了解了很多进程相关的理论知识,了解进程是什么应该不再困难了,刚刚我们已经了解了,运行中的程序就是一个进程.所有的进程都是通过它的父进程来创 ...

  4. Python程序中的进程操作

    之前我们已经了解了很多进程相关的理论知识,了解进程是什么应该不再困难了,刚刚我们已经了解了,运行中的程序就是一个进程.所有的进程都是通过它的父进程来创建的.因此,运行起来的python程序也是一个进程 ...

  5. Python程序中的进程操作-开启多进程(multiprocess.process)

    目录 一.multiprocess模块 二.multiprocess.process模块 三.process模块介绍 3.1 方法介绍 3.2 属性介绍 3.3 在windows中使用process模 ...

  6. Python程序中的进程操作-进程池(multiprocess.Pool)

    目录 一.进程池 二.概念介绍--multiprocess.Pool 三.参数用法 四.主要方法 五.其他方法(了解) 六.代码实例--multiprocess.Pool 6.1 同步 6.2 异步 ...

  7. 29、Python程序中的进程操作(multiprocess.process)

    一.multiprocess模块 multiprocess不是一个模块而是python中一个操作.管理进程的包. 子模块分为四个部分: 创建进程部分 进程同步部分 进程池部分 进程之间数据共享 二.m ...

  8. Python程序中的进程操作-进程间通信(multiprocess.Queue)

    目录 一.进程间通信 二.队列 2.1 概念介绍--multiprocess.Queue 2.1.1 方法介绍 2.1.2 其他方法(了解) 三.代码实例--multiprocess.Queue 3. ...

  9. Python程序中的进程操作-进程间数据共享(multiprocess.Manager)

    目录 一.进程之间的数据共享 1.1 Manager模块介绍 1.2 Manager例子 一.进程之间的数据共享 展望未来,基于消息传递的并发编程是大势所趋 即便是使用线程,推荐做法也是将程序设计为大 ...

随机推荐

  1. 利用python脚本(re)抓取美空mm图片

    很久没有写博客了,这段时间一直在搞风控的东西,过段时间我把风控的内容整理整理发出来大家一起研究研究. 这两天抽空写了两个python爬虫脚本,一个使用re,一个使用xpath. 直接上代码——基于re ...

  2. Cocos Creator - 入门教程项目 - 博客频道 - CSDN.NET

    3457 教程司令部 [20160418] | Cocos Creator - CocoaChina CocoaChina_让移动开发更简单cocoachina.com 2033 Cocos Crea ...

  3. OpenStack-Neutron-VPNaaS-测试和使用

    准备 确认安全组规则允许vpn协议通过(tcp协议和icmp协议,测试的时候直接设置“进出”全开) 确认两个子网上的vm可以ping通对方路由的外网ip,确认下两个vm是否可以访问外网 测试环境 (1 ...

  4. 【转】jira插件Zephyr的具体使用

    在工作中,我们通常是在excel表格中编写测试用例,增删改查功能都不错,但保存.管理.共享都不完美,为了让公司领导或其他同事方便查看测试执行情况和测试进度,我们引入了TestLink工具来编写测试用例 ...

  5. m2e-wtp的作用

    描述 Maven3下的项目结构,target目录下会有一个m2e-wtp文件夹,删除掉会自动生成,有什么作用呢? wtp解释 WTP:Web Tools Project Maven集成WTP The ...

  6. SpringMvc CharacterEncodingFilter 解析 encoding 参数并初始化参数

    SpringMvc CharacterEncodingFilter 解析 encoding 参数并初始化参数:

  7. tiny6410的启动参数

    bootargs=root=/dev/mtdblock2 rootfstype=yaffs2 init=/linuxrc console=ttySAC0,115200 bootcmd=nand led ...

  8. MySQL外键约束_ON DELETE CASCADE/ON UPDATE CASCADE

    MySQL通过外键约束实现数据库的参照完整性,外键约束条件可在创建外键时指定,table的存储引擎只能是InnoDB,因为只有这种存储模式才支持外键. 外键约束条件有以下4种: (1)restrict ...

  9. SSM项目思路整合NEW

    #首先进行项目思路整体分析,具体包括哪些模块,如何实现等: 一)搭建环境 1.导包: (Spring核心包4个 + 面向切面的包4个 + SpringJDBC和事务的包各一个, SpringMVC两个 ...

  10. P3648 [APIO2014]序列分割(斜率优化dp)

    P3648 [APIO2014]序列分割 我们先证明,分块的顺序对结果没有影响. 我们有一个长度为3的序列$abc$ 现在我们将$a,b,c$分开来 随意枚举一种分块方法,如$(ab)(c)$,$(a ...