综合案例分析
现有数据集 department.jsonemployee.json,以部门名称和员工性别为粒度,试计算每个部门分性别平均年龄与平均薪资。 department.json如下:
{"id":1,"name":"Tech Department"}
{"id":2,"name":"Fina Department"}
{"id":3,"name":"HR Department"}
employee.json如下:
{"name":"zhangsan","age":26,"depId":1,"gender":"male","salary":20000}
{"name":"lisi","age":36,"depId":2,"gender":"female","salary":8500}
{"name":"wangwu","age":23,"depId":1,"gender":"male","salary":5000}
{"name":"zhaoliu","age":25,"depId":3,"gender":"male","salary":7000}
{"name":"marry","age":19,"depId":2,"gender":"female","salary":6600}
{"name":"Tom","age":36,"depId":1,"gender":"female","salary":5000}
{"name":"kitty","age":43,"depId":2,"gender":"female","salary":6000}
两份数据我们在演示的时候已经创建并上传至 hdfs 文件系统,用户在这里需要请自行创建。
执行命令:
root@foo2 cloudera]# cd /root/device-report/
[root@foo2 device-report]# ls
b.txt  test.sql
[root@foo2 device-report]# vim department.json
[root@foo2 device-report]# vim employee.json
[root@foo2 device-report]# ls
b.txt  department.json  employee.json  test.sql
[root@foo2 device-report]# chown hdfs:hdfs department.json
[root@foo2 device-report]# chown hdfs:hdfs employee.json
[root@foo2 device-report]# ls
b.txt  department.json  employee.json  test.sql
[root@foo2 device-report]# ll
总用量 16
-rw-r--r-- 1 hdfs hdfs  22 8月  14 10:45 b.txt
-rw-r--r-- 1 hdfs hdfs 100 8月  17 16:50 department.json
-rw-r--r-- 1 hdfs hdfs 474 8月  17 16:53 employee.json [root@foo2 device-report]# su hdfs
[hdfs@foo2 device-report]$ clear
[hdfs@foo2 device-report]$ ls
b.txt  test.sql
[hdfs@foo2 device-report]$ cd /var/lib/hadoop-h
hadoop-hdfs/   hadoop-httpfs/
[hdfs@foo2 device-report]$ cd /var/lib/hadoop-hdfs/device-report/
[hdfs@foo2 device-report]$ ls
b.txt  department.json  employee.json  person.json  test.sql
[hdfs@foo2 device-report]$ hadoop fs -put department.json /testdata
[hdfs@foo2 device-report]$ hadoop fs -put employee.json /testdata
[hdfs@foo2 device-report]$ hadoop fs -ls /testdata
Found 3 items
-rw-r--r--   2 hdfs supergroup        100 2018-08-17 16:54 /testdata/department.json
-rw-r--r--   2 hdfs supergroup        474 2018-08-17 16:55 /testdata/employee.json
-rw-r--r--   2 hdfs supergroup         71 2018-08-17 16:39 /testdata/person.json
查看内容
[hdfs@foo2 device-report]$ hadoop fs -cat hdfs://192.168.0.106:8020/testdata/department.json
{"id":1,"name":"Tech Department"}
{"id":2,"name":"Fina Department"}
{"id":3,"name":"HR Department"}
[hdfs@foo2 device-report]$ hadoop fs -cat hdfs://192.168.0.106:8020/testdata/employee.json
{"name":"zhangsan","age":26,"depId":1,"gender":"male","salary":20000}
{"name":"lisi","age":36,"depId":2,"gender":"female","salary":8500}
{"name":"wangwu","age":23,"depId":1,"gender":"male","salary":5000}
{"name":"zhaoliu","age":25,"depId":3,"gender":"male","salary":7000}
{"name":"marry","age":19,"depId":2,"gender":"female","salary":6600}
{"name":"Tom","age":36,"depId":1,"gender":"female","salary":5000}
{"name":"kitty","age":43,"depId":2,"gender":"female","salary":6000}
 
-rw-r--r-- 1 hdfs hdfs 237 8月  14 16:49 test.sql
[root@foo2 device-report]# mv department.json /var/lib/hadoop-hdfs/device-report/
[root@foo2 device-report]# mv employee.json /var/lib/hadoop-hdfs/device-report/
 
1). 加载数据
scala> val emp = spark.read.json("hdfs://192.168.0.106:8020/testdata/employee.json")
emp: org.apache.spark.sql.DataFrame = [age: bigint, depId: bigint ... 3 more fields]
 
scala> val dep = spark.read.json("hdfs://192.168.0.106:8020/testdata/department.json")
dep: org.apache.spark.sql.DataFrame = [id: bigint, name: string]
变成视图:
scala> emp.createOrReplaceTempView("employee")
 
scala> dep.createOrReplaceTempView("department")
 
2). 用算子操作
      # 注意:两个表的字段的连接条件,需要使用三个等号
     emp.join(dep,$"id" === $"depId").groupBy(dep("name"),emp("gender")).agg(avg(emp("salary")),avg(emp("age"))).show()
    结果:
      +---------------+------+-----------------+------------------+                   
|           name|gender|      avg(salary)|          avg(age)|
+---------------+------+-----------------+------------------+
|Tech Department|  male|          12500.0|              24.5|
|Fina Department|female|7033.333333333333|32.666666666666664|
|Tech Department|female|           5000.0|              36.0|
|  HR Department|  male|           7000.0|              25.0|
+---------------+------+-----------------+------------------+
3). 用SQL操作
     scala> spark.sql("select department.name,avg(employee.salary),avg(employee.age) from employee left join department  on employee.depId=department.id group by department.name,employee.gender").show()
     结果:
+-----------------+---------------------+----------------------+                         
|                   name|                 avg(salary)|                      avg(age)|
+-----------------+---------------------+----------------------+
|Tech Department |                    12500.0|                            24.5|
|Fina Department  |7033.333333333333|32.666666666666664|
|Tech Department |                      5000.0|                            36.0|
|  HR Department  |                      7000.0|                            25.0|
+-----------------+---------------------+----------------------+
 
2、3结果都是一样一样的。
 

Spark SQL例子的更多相关文章

  1. Spark源码系列(九)Spark SQL初体验之解析过程详解

    好久没更新博客了,之前学了一些R语言和机器学习的内容,做了一些笔记,之后也会放到博客上面来给大家共享.一个月前就打算更新Spark Sql的内容了,因为一些别的事情耽误了,今天就简单写点,Spark1 ...

  2. Spark1.0新特性-->Spark SQL

    Spark1.0出来了,变化还是挺大的,文档比以前齐全了,RDD支持的操作比以前多了一些,Spark on yarn功能我居然跑通了.但是最最重要的就是多了一个Spark SQL的功能,它能对RDD进 ...

  3. Spark SQL概念学习系列之Spark SQL 优化策略(五)

    查询优化是传统数据库中最为重要的一环,这项技术在传统数据库中已经很成熟.除了查询优化, Spark SQL 在存储上也进行了优化,从以下几点查看 Spark SQL 的一些优化策略. (1)内存列式存 ...

  4. Spark SQL 用户自定义函数UDF、用户自定义聚合函数UDAF 教程(Java踩坑教学版)

    在Spark中,也支持Hive中的自定义函数.自定义函数大致可以分为三种: UDF(User-Defined-Function),即最基本的自定义函数,类似to_char,to_date等 UDAF( ...

  5. 8.Spark SQL

    Spark SQL 1 Why Apache Spark 2 关于Apache Spark 3 如何安装Apache Spark 4 Apache Spark的工作原理 5 spark弹性分布式数据集 ...

  6. Apache Spark 2.2.0 中文文档 - Spark SQL, DataFrames and Datasets Guide | ApacheCN

    Spark SQL, DataFrames and Datasets Guide Overview SQL Datasets and DataFrames 开始入门 起始点: SparkSession ...

  7. Spark sql ---JSON

    介绍Spark SQL的JSON支持,这是我们在Databricks中开发的一个功能,可以在Spark中更容易查询和创建JSON数据.随着网络和移动应用程序的普及,JSON已经成为Web服务API以及 ...

  8. Spark官方1 ---------Spark SQL和DataFrame指南(1.5.0)

    概述 Spark SQL是用于结构化数据处理的Spark模块.它提供了一个称为DataFrames的编程抽象,也可以作为分布式SQL查询引擎. Spark SQL也可用于从现有的Hive安装中读取数据 ...

  9. 深入研究Spark SQL的Catalyst优化器(原创翻译)

    Spark SQL是Spark最新和技术最为复杂的组件之一.它支持SQL查询和新的DataFrame API.Spark SQL的核心是Catalyst优化器,它以一种新颖的方式利用高级编程语言特性( ...

随机推荐

  1. Jquery仿百度经验左右滚动切换效果(转)

    http://www.xwcms.net/webAnnexImages/fileAnnex/201608/61342/index.html

  2. Redis占硬盘空间

    转载自:http://blog.csdn.net/qq285744011/article/details/51002409 [问题的原因] Windows版Redis启动后,会在C盘自动创建一个很大的 ...

  3. poj2279——Mr. Young's Picture Permutations

    Description Mr. Young wishes to take a picture of his class. The students will stand in rows with ea ...

  4. mvc项目用log4net 记录错误日志

    1.  首先下载lognet 下载地址 http://logging.apache.org/log4net/download_log4net.cgi 2.找到bin文件中的net文件夹  之后看你电脑 ...

  5. zombodb 聚合函数

    zombodb 暴露基本上所有es 的集合函数为sql 函数,我们可以方便使用 比如 count FUNCTION zdb.count( index regclass, query zdbquery) ...

  6. Oracle Sql Loader的学习使用

    最近由于遇到oracle控制文件的使用,虽然不是很复杂,但是从来没有用过,专门花点时间看看.点击 这里 查看详细 1,概述: Sql Loader: 一个批量工具,将文件数据导入到数据库.可以导入一个 ...

  7. nginx屏蔽某段IP、某个国家的IP

    nginx中可通过写入配置文件的方法来达到一定的过滤IP作用,可使用deny来写. deny的使用方法可用于前端服务器无防护设备的时候过滤一些异常IP,过滤的client ip会被禁止再次访问,起到一 ...

  8. [蓝桥杯]ALGO-181.算法训练_According to Bartjens

    问题描述 计算器和计算机的大量普及也有其弊端.即便是受过专业技术训练的学生们也很可能缺乏计算能力.由于电脑的大量使用,很多人无法心算出7*8这样的算式,甚至是用纸和笔也算不出13*.不过谁在意呢? B ...

  9. 【剑指offer】广度优先遍历二叉树

    问题:从上往下打印出二叉树的每个节点,同层节点从左至右打印. *思路:先用队列存放树的根结点.每次出队一个结点,将结点非空的左右孩子分别入队.重复此过程,直到队列为空. import java.uti ...

  10. springJdbc(jdbcTemplate)事物拦截失效问题解决

    先贴上web.xml和spring-jdbc.xml代码: web.xml代码: <context-param> <param-name>contextConfigLocati ...