P4345 [SHOI2015]超能粒子炮·改

题意

求\(\sum_{i=0}^k\binom{n}{i}\),\(T\)组数据

范围

\(T\le 10^5,n,j\le 10^{18}\)


设\(f(n,k)=\sum_{i=0}^k\binom{n}{i}\)

\[\begin{aligned}
&f(n,k)\\
=&\sum_{i=0}^k\binom{n/p}{i/p}\binom{n\%p}{i\%p}\\
=&\sum_{j=0}^{k/p-1}\binom{n/p}{j}\sum_{i=0}^{p-1}\binom{n\%p}{i}+\binom{n/p}{k/p}\sum_{i=0}^{k\%p}\binom{n\%p}{i}\\
=&f(n/p,k/p-1)f(n\%p,p-1)+\binom{n/p}{k/p}f(n\%p,k\%p)
\end{aligned}
\]

然后就是注意边界边界边界...wa了好久...


Code:

// luogu-judger-enable-o2
#include <cstdio>
#define ll long long
const int mod=2333;
int C[mod+10][mod+10],f[mod+10][mod+10],T;
ll n,k;
void init()
{
f[0][0]=C[0][0]=1;
for(int i=1;i<mod;i++)
{
f[i][0]=C[i][0]=1;
for(int j=1;j<=i;j++)
{
C[i][j]=(C[i-1][j]+C[i-1][j-1])%mod;
f[i][j]=(f[i][j-1]+C[i][j])%mod;
}
}
}
int getC(ll m,ll n)
{
if(m<n) return 0;
if(m<mod) return C[m][n];
return getC(m/mod,n/mod)*getC(m%mod,n%mod)%mod;
}
int min(int x,int y){return x<y?x:y;}
int getF(ll n,ll k)
{
if(k<0) return 0;
if(!n) return 1;//f[0][k]...
if(!k) return 1;//也许是n>=mod?的特判?
if(n<mod) return f[n][min(n,k)];
return (getF(n/mod,k/mod-1)*getF(n%mod,mod-1)%mod
+getC(n/mod,k/mod)*getF(n%mod,k%mod)%mod)%mod;
}
int main()
{
init();
scanf("%d",&T);
while(T--)
{
scanf("%lld%lld",&n,&k);
printf("%d\n",getF(n,k));
}
return 0;
}

2019.1.20

洛谷 P4345 [SHOI2015]超能粒子炮·改 解题报告的更多相关文章

  1. loj 2038 / 洛谷 P4345 [SHOI2015] 超能粒子炮・改 题解

    好玩的推式子 题目描述 曾经发明了脑洞治疗仪与超能粒子炮的发明家 SHTSC 又公开了他的新发明:超能粒子炮・改--一种可以发射威力更加强大的粒子流的神秘装置. 超能粒子炮・改相比超能粒子炮,在威力上 ...

  2. [洛谷P4345][SHOI2015]超能粒子炮·改

    题目大意:给你$n,k$,求:$$\sum\limits_{i=0}^k\binom n i\pmod{2333}$$题解:令$p=2333,f(n,k)\equiv\sum\limits_{i=0} ...

  3. bzoj4591 / P4345 [SHOI2015]超能粒子炮·改

    P4345 [SHOI2015]超能粒子炮·改 题意:求$\sum_{i=1}^{k}C(n,i)\%(P=2333)$ 肯定要先拆开,不然怎么做呢(大雾) 把$C(n,i)$用$lucas$分解一下 ...

  4. P4345 [SHOI2015]超能粒子炮·改 Lucas

    \(\color{#0066ff}{ 题目描述 }\) 曾经发明了脑洞治疗仪与超能粒子炮的发明家 SHTSC 又公开了他的新发明:超能粒子炮・改--一种可以发射威力更加强大的粒子流的神秘装置. 超能粒 ...

  5. P4345 [SHOI2015]超能粒子炮·改

    传送门 看到数据和模数大小就知道要上 lucas 了 然后开始愉快地推公式: 答案为 $\sum _{i=0}^kC_{n}^{i}\ (mod\ 2333)$ 设 $f [ i ] [ j ] = ...

  6. 【BZOJ4591】[SHOI2015]超能粒子炮·改 (卢卡斯定理)

    [BZOJ4591][SHOI2015]超能粒子炮·改 (卢卡斯定理) 题面 BZOJ 洛谷 题解 感天动地!终于不是拓展卢卡斯了!我看到了一个模数,它是质数!!! 看着这个东西就感觉可以递归处理. ...

  7. Bzoj 4591: [Shoi2015]超能粒子炮·改 数论,Lucas定理,排列组合

    4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 178  Solved: 70[Submit][Stat ...

  8. bzoj 4591: [Shoi2015]超能粒子炮·改 [lucas定理]

    4591: [Shoi2015]超能粒子炮·改 题意:多组询问,求 \[ S(n, k) = \sum_{i=0}^n \binom{n}{i} \mod 2333,\ k \le n \le 10^ ...

  9. BZOJ_4591_[Shoi2015]超能粒子炮·改_Lucas定理

    BZOJ_4591_[Shoi2015]超能粒子炮·改_Lucas定理 Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以 ...

随机推荐

  1. 开发手记:Linux下更改Oracle表空间大小

    问题:同事反馈我们的测试环境数据库执行SQL和编译PKG非常慢,猜测可能是我们的测试环境数据库的表空间满了,但是我不知道数据库DBA的用户和密码. 步骤1:查看表空间占用情况 SELECT UPPER ...

  2. Random快速产生相同随机数的原因及解决方案

    老生常谈,还是那三句话: 学历代表你的过去,能力代表你的现在,学习代表你的将来 十年河东,十年河西,莫欺少年穷 学无止境,精益求精 问题描述:很多时候我们可能需要在极短的时间内生成大量的随机数,但是你 ...

  3. 【Qt】窗口居中显示

    w.move((a.desktop()->width() - w.width())/, (a.desktop()->height() - w.height())/); 上述方法可以置中,但 ...

  4. 运行supervisord -c /etc/supervisor/supervisord.conf 出错,解决办法

    坑都让我踩了...... 1 supervisord -c /etc/supervisor/supervisord.conf 什么意思? 答:手动启动:supervisord        具体详见 ...

  5. Linux下的计算命令和求和、求平均值、求最值命令梳理

    在Linux系统下,经常会有一些计算需求,那么下面就简单梳理下几个常用到的计算命令 (1)bc命令bc命令是一种支持任意精度的交互执行的计算器语言.bash内置了对整数四则运算的支持,但是并不支持浮点 ...

  6. webvirtmgr-重命名kvm虚拟机的名称

    之前部署了Webvirtmgr平台管理kvm虚拟机,由于虚拟机在创建时名称是顺便起的,后续在虚拟机上部署了部分业务.为了便于管理,最好将虚拟机的名称重置下. 现在说下如何修改kvm中虚拟机的名称: 比 ...

  7. PLSQL使用技巧 如何设置默认显示My Objects、记住密码等

    https://www.cnblogs.com/yilinzi/p/7144852.html PL/SQL Developer实现双击table查询 https://blog.csdn.net/zhy ...

  8. 第三次作业(1) Visual Studio程序安装过程和练习过程

    Visual Studio程序安装过程和练习过程 第一步 首先要在网上找一个VS2013的安装包,之后我安装在D盘上,C盘上也需要有5.2G空间,勾选相应的选项,才能继续安装. 安装的过程很漫长,接近 ...

  9. 《Linux内核分析》实践4

    <Linux内核分析> 实践四--ELF文件格式分析 20135211李行之 一.概述 1.ELF全称Executable and Linkable Format,可执行连接格式,ELF格 ...

  10. github链接地址及

    http://www.github.com/houyanan1/test.git git 在本地创建分支,并且已经在该分支中开发了一段时间,那么commit到本地后,代码会做一个提交快照,在本地分支保 ...