P4345 [SHOI2015]超能粒子炮·改

题意

求\(\sum_{i=0}^k\binom{n}{i}\),\(T\)组数据

范围

\(T\le 10^5,n,j\le 10^{18}\)


设\(f(n,k)=\sum_{i=0}^k\binom{n}{i}\)

\[\begin{aligned}
&f(n,k)\\
=&\sum_{i=0}^k\binom{n/p}{i/p}\binom{n\%p}{i\%p}\\
=&\sum_{j=0}^{k/p-1}\binom{n/p}{j}\sum_{i=0}^{p-1}\binom{n\%p}{i}+\binom{n/p}{k/p}\sum_{i=0}^{k\%p}\binom{n\%p}{i}\\
=&f(n/p,k/p-1)f(n\%p,p-1)+\binom{n/p}{k/p}f(n\%p,k\%p)
\end{aligned}
\]

然后就是注意边界边界边界...wa了好久...


Code:

// luogu-judger-enable-o2
#include <cstdio>
#define ll long long
const int mod=2333;
int C[mod+10][mod+10],f[mod+10][mod+10],T;
ll n,k;
void init()
{
f[0][0]=C[0][0]=1;
for(int i=1;i<mod;i++)
{
f[i][0]=C[i][0]=1;
for(int j=1;j<=i;j++)
{
C[i][j]=(C[i-1][j]+C[i-1][j-1])%mod;
f[i][j]=(f[i][j-1]+C[i][j])%mod;
}
}
}
int getC(ll m,ll n)
{
if(m<n) return 0;
if(m<mod) return C[m][n];
return getC(m/mod,n/mod)*getC(m%mod,n%mod)%mod;
}
int min(int x,int y){return x<y?x:y;}
int getF(ll n,ll k)
{
if(k<0) return 0;
if(!n) return 1;//f[0][k]...
if(!k) return 1;//也许是n>=mod?的特判?
if(n<mod) return f[n][min(n,k)];
return (getF(n/mod,k/mod-1)*getF(n%mod,mod-1)%mod
+getC(n/mod,k/mod)*getF(n%mod,k%mod)%mod)%mod;
}
int main()
{
init();
scanf("%d",&T);
while(T--)
{
scanf("%lld%lld",&n,&k);
printf("%d\n",getF(n,k));
}
return 0;
}

2019.1.20

洛谷 P4345 [SHOI2015]超能粒子炮·改 解题报告的更多相关文章

  1. loj 2038 / 洛谷 P4345 [SHOI2015] 超能粒子炮・改 题解

    好玩的推式子 题目描述 曾经发明了脑洞治疗仪与超能粒子炮的发明家 SHTSC 又公开了他的新发明:超能粒子炮・改--一种可以发射威力更加强大的粒子流的神秘装置. 超能粒子炮・改相比超能粒子炮,在威力上 ...

  2. [洛谷P4345][SHOI2015]超能粒子炮·改

    题目大意:给你$n,k$,求:$$\sum\limits_{i=0}^k\binom n i\pmod{2333}$$题解:令$p=2333,f(n,k)\equiv\sum\limits_{i=0} ...

  3. bzoj4591 / P4345 [SHOI2015]超能粒子炮·改

    P4345 [SHOI2015]超能粒子炮·改 题意:求$\sum_{i=1}^{k}C(n,i)\%(P=2333)$ 肯定要先拆开,不然怎么做呢(大雾) 把$C(n,i)$用$lucas$分解一下 ...

  4. P4345 [SHOI2015]超能粒子炮·改 Lucas

    \(\color{#0066ff}{ 题目描述 }\) 曾经发明了脑洞治疗仪与超能粒子炮的发明家 SHTSC 又公开了他的新发明:超能粒子炮・改--一种可以发射威力更加强大的粒子流的神秘装置. 超能粒 ...

  5. P4345 [SHOI2015]超能粒子炮·改

    传送门 看到数据和模数大小就知道要上 lucas 了 然后开始愉快地推公式: 答案为 $\sum _{i=0}^kC_{n}^{i}\ (mod\ 2333)$ 设 $f [ i ] [ j ] = ...

  6. 【BZOJ4591】[SHOI2015]超能粒子炮·改 (卢卡斯定理)

    [BZOJ4591][SHOI2015]超能粒子炮·改 (卢卡斯定理) 题面 BZOJ 洛谷 题解 感天动地!终于不是拓展卢卡斯了!我看到了一个模数,它是质数!!! 看着这个东西就感觉可以递归处理. ...

  7. Bzoj 4591: [Shoi2015]超能粒子炮·改 数论,Lucas定理,排列组合

    4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 178  Solved: 70[Submit][Stat ...

  8. bzoj 4591: [Shoi2015]超能粒子炮·改 [lucas定理]

    4591: [Shoi2015]超能粒子炮·改 题意:多组询问,求 \[ S(n, k) = \sum_{i=0}^n \binom{n}{i} \mod 2333,\ k \le n \le 10^ ...

  9. BZOJ_4591_[Shoi2015]超能粒子炮·改_Lucas定理

    BZOJ_4591_[Shoi2015]超能粒子炮·改_Lucas定理 Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以 ...

随机推荐

  1. Jquery UI 中的datepicker() ,获取日期后的回调函数onClose()

    <head> //引入相关的css/js <link rel="stylesheet" href="//code.jquery.com/ui/1.10. ...

  2. vue 结合mint-ui Message box的使用方法

    两种方式使用: 一.全局注册 1.在main.js中引入 //引入 import { MessageBox } from 'mint-ui';   //全局使用,挂载到原型上 Vue.prototyp ...

  3. (11)学习笔记 ) ASP.NET CORE微服务 Micro-Service ---- Thrift高效通讯 (完结)

    一. 什么是 RPC Restful 采用 Http 进行通讯,优点是开放.标准.简单.兼容性升级容易: 缺点是性能略低.在 QPS 高或者对响应时间要求苛刻的服务上,可以用 RPC(Remote P ...

  4. [开源 .NET 跨平台 Crawler 数据采集 爬虫框架: DotnetSpider] [三] 配置式爬虫

    [DotnetSpider 系列目录] 一.初衷与架构设计 二.基本使用 三.配置式爬虫 四.JSON数据解析与配置系统 五.如何做全站采集 上一篇介绍的基本的使用方式,自由度很高,但是编写的代码相对 ...

  5. C_数据结构_快速排序

    # include <stdio.h> void QuickSort(int * a, int low, int high); int FindPos(int * a, int low, ...

  6. Let the Balloon Rise HDU水题

    题意 让你统计字符串最多的那个串,并输出 分析 直接用map统计,不断更新最大值即可 代码 #include<iostream> #include<algorithm> #in ...

  7. M1/M2项目阶段总结

    1.M1/M2总结 我们这学期完成了学霸项目. 在M1阶段,我们首先进行了分工,完成了一个系统的计划,然后是对学长代码的移植和优化.在优化代码的过程中,我们遇到了不少问题,比如一些代码的冗余以及指向性 ...

  8. 《Linux内核分析》第六周学习小结

    进程的描述和进程的创建 一.进程的描述 进程描述符task_struct数据结构: (1)操作系统的三大功能: 进程管理.内存管理.文件系统 (2)进程的作用: 将信号.进程间通信.内存管理和文件系统 ...

  9. 战神答题APP 无敌结束版

    APP发布了哦~~     多多捧场~ http://anzhuoyuan.com/app/info/appid/242381.html 还有github https://github.com/784 ...

  10. Java面向对象(Eclipse高级、类与接口作为参数返回值)

      面向对象 今日内容介绍 u Eclipse常用快捷键操作 u Eclipse文档注释导出帮助文档 u Eclipse项目的jar包导出与使用jar包 u 不同修饰符混合使用细节 u 辨析何时定义变 ...