洛谷题目传送门

你谷无题解于是来补一发

随便百度题解,发现了不少诸如树剖\(log^3\)LCT\(log^2\)的可怕描述。。。。。。

于是来想想怎么利用题目的性质,把复杂度降下来。

首先,每个点的输出状态只有\(0/1\),于是每个点的总状态也非常有限,可以根据权值为\(1\)的儿子数量\(0-3\)分为四种,记为该点的点权。

我们都会模拟暴力过程——先改叶子节点(先默认为\(0\)改为\(1\)),如果它的父亲此时权值为\(1\)的儿子数量从原来小于\(0\)的变成大于\(0\)的,那么父亲的权值也要改。以此类推,直到有一个节点输出状态没有变化,那么它的所有祖先肯定不会变。

通过模拟我们发现,每次修改的一定是一段自底向上的连续区间!

接着也就不难想到,只有当点权为\(1\)时,才能通过修改点权变成\(2\),使输出由\(0\)变成\(1\),从而继续引发祖先的变化。那么我们需要知道的就是,对于每一个叶子节点,它自底向上的连续一段点权为\(1\)的部分。

再讨论叶子节点\(1\)改\(0\)的情况,同理也可以发现我们还要维护自底向上的连续一段点权为\(2\)的部分。

这个可以树剖(有很多维护法,都是\(log^2\)的,跳链和链修改都有\(log\))正在学树剖,先留个坑,到时候再补。。。

当然可以LCT,讲两个维护法。第一种是用bool值维护区间是否有权值不为\(1/2\)的点,每次Splay上二分查找最深的不为\(1/2\)的点,把它伸展上来,右子树做区间修改,这个点做单点修改。

因为写二分比较麻烦(其实就是几行的事),所以还不如直接维护最深的不为\(1/2\)点的编号,找都不用找。直接把它伸展上来。修改同上。容易发现这里的LCT连换根都不要。

两种写法都需要注意特判:如果整条从根到叶子的链没有一个不为\(1/2\)的点,直接做区间修改。

分享一个naive的错误——蒟蒻默认父节点的编号比子节点小,然后pushup直接取\(\max\),竟然获得了95分?!调了半天本机对拍又是全AC(自己的数据生成器肯定是父节点的编号比子节点小啦。。。)

刚掉这题后还收获了一点小经验——不要给LCT永久化地贴上常数大的标签!因为少一个\(log\),所以\(n\)越大越有优势(这题\(5*10^5\)),还不用reverse。看看统计,就知道什么叫LCT全方位(时间、空间、码量)完爆树剖的感觉了哈哈哈哈hhhh

https://www.luogu.org/recordnew/lists?uid=&pid=P4332&status=&sort=1

https://loj.ac/problem/2187/statistics/fastest

#include<cstdio>
#include<algorithm>
#define RG register
#define I inline
#define R RG int
#define lc c[x][0]
#define rc c[x][1]
#define G if(++ip==ie)if(fread(ip=ibuf,1,L,stdin))
using namespace std;
const int N=5e5+9,M=1.5e6+9,L=1<<19;
char ibuf[L],*ie=ibuf+L,*ip=ie-1;
int n,f[M],c[N][2],t[N],n1[N],n2[N],v[M],q[M],d[N];
I int max(R x,R y){return x>y?x:y;}
I int in(){
G;while(*ip<'-')G;
R x=*ip&15;G;
while(*ip>'-'){(x*=10)+=*ip&15;G;}
return x;
}
I bool nrt(R x){
return c[f[x]][0]==x||c[f[x]][1]==x;
}
I void up(R x){//先右儿子再自己最后左儿子
if(!(n1[x]=n1[rc])&&!(n1[x]=x*(v[x]!=1)))n1[x]=n1[lc];
if(!(n2[x]=n2[rc])&&!(n2[x]=x*(v[x]!=2)))n2[x]=n2[lc];
}
I void dn(R x,R tg){//被区间修改的要么都是1要么都是2,直接反转信息
v[x]^=3;swap(n1[x],n2[x]);t[x]+=tg;
}
I void all(R x){
if(nrt(x))all(f[x]);
if(t[x])dn(lc,t[x]),dn(rc,t[x]),t[x]=0;
}
I void rot(R x){
R y=f[x],z=f[y],k=c[y][1]==x,w=c[x][!k];
if(nrt(y))c[z][c[z][1]==y]=x;
f[f[f[c[c[x][!k]=y][k]=w]=y]=x]=z;up(y);
}
I void sp(R x){
all(x);
for(R y;nrt(x);rot(x))
if(nrt(y=f[x]))rot((c[f[y]][0]==y)^(c[y][0]==x)?x:y);
up(x);
}
I void ac(R x){
for(R y=0;x;sp(x),rc=y,up(y=x),x=f[x]);
}
int main(){
n=in();R he,tl=0,i,x,tp,nowrt;//nowrt全局记录根的输出,方便,减小常数
for(i=1;i<=n;++i)d[f[in()]=f[in()]=f[in()]=i]=3;
for(;i<=3*n+1;++i)v[q[++tl]=i]=in()<<1;
for(he=1;he<=tl;++he){//懒得dfs了,直接从下往上拓扑排序预处理
x=q[he];if(x<=n)up(x);
v[f[x]]+=v[x]>>1;
if(!--d[f[x]])q[++tl]=f[x];
}
nowrt=v[1]>>1;
for(R q=in();q;--q){
tp=(v[x=in()]^=2)-1;//记录当前变化类型
ac(x=f[x]);sp(x);
if((~tp?n1:n2)[x]){
sp(x=(~tp?n1:n2)[x]);
dn(rc,tp),up(rc);
v[x]+=tp;up(x);
}
else dn(x,tp),up(x),nowrt^=1;//注意特判
putchar(nowrt|'0');putchar('\n');
}
return 0;
}

洛谷P4332 [SHOI2014]三叉神经树(LCT,树剖,二分查找,拓扑排序)的更多相关文章

  1. 洛谷P4332 [SHOI2014]三叉神经树(LCT)

    传送门 FlashHu大佬太强啦%%% 首先,我们可以根据每一个点的权值为$1$的儿子的个数把每个点记为$0~3$,表示这一个点的点权 先考虑一下暴力的过程,假设从$0$变为$1$,先更改一个叶子结点 ...

  2. 洛谷4322 SHOI2014 三叉神经树(LCT+思维)

    好久之前做的题了QWQ 现在来补一发博客 一道神仙题啊..qwq 首先,我们可以看出来,我们如果对于每个点维护一个\(val\),表示他的直系儿子中有几个表现为1的. 那么\(val[x]>&g ...

  3. 【洛谷 P1073】 最优贸易 (Tarjan缩点+拓扑排序)

    题目链接 先\(Tarjan\)缩点,记录每个环内的最大值和最小值. 然后跑拓扑排序,\(Min[u]\)表示到\(u\)的最小值,\(ans[u]\)表示到\(u\)的答案,\(Min\)和\(an ...

  4. 洛谷 P3373 【模板】线段树 2

    洛谷 P3373 [模板]线段树 2 洛谷传送门 题目描述 如题,已知一个数列,你需要进行下面三种操作: 将某区间每一个数乘上 xx 将某区间每一个数加上 xx 求出某区间每一个数的和 输入格式 第一 ...

  5. 洛谷 P4284 [SHOI2014]概率充电器 概率与期望+换根DP

    洛谷 P4284 [SHOI2014]概率充电器 概率与期望+换根DP 题目描述 著名的电子产品品牌\(SHOI\) 刚刚发布了引领世界潮流的下一代电子产品-- 概率充电器: "采用全新纳米 ...

  6. 【bzoj4383】[POI2015]Pustynia 线段树优化建图+差分约束系统+拓扑排序

    题目描述 给定一个长度为n的正整数序列a,每个数都在1到10^9范围内,告诉你其中s个数,并给出m条信息,每条信息包含三个数l,r,k以及接下来k个正整数,表示a[l],a[l+1],...,a[r- ...

  7. 洛谷P4338 [ZJOI2018]历史(LCT,树形DP,树链剖分)

    洛谷题目传送门 ZJOI的考场上最弱外省选手T2 10分成功滚粗...... 首先要想到30分的结论 说实话Day1前几天刚刚刚掉了SDOI2017的树点涂色,考场上也想到了这一点 想到了又有什么用? ...

  8. 洛谷P4299 首都(BZOJ3510)(LCT,树的重心,二分查找)

    Update:原来的洛谷U21715已成坑qwq 已经被某位管理员巨佬放进公共题库啦!又可以多一个AC记录啦! 洛谷题目传送门 其实也可以到这里交啦 思路分析 动态维护树的重心 题目中说到国家的首都会 ...

  9. 洛谷P3345 [ZJOI2015]幻想乡战略游戏(动态点分治,树的重心,二分查找,Tarjan-LCA,树上差分)

    洛谷题目传送门 动态点分治小白,光是因为思路不清晰就耗费了不知道多少时间去gang这题,所以还是来理理思路吧. 一个树\(T\)里面\(\sum\limits_{v\in T} D_vdist(u,v ...

随机推荐

  1. java并发编程CountDownLatch

    /** * CountDownLatch用法 * CountDownLatch类位于java.util.concurrent包下,利用它可以实现类似计数器的功能.比如有一个任务A, * 它要等待其他4 ...

  2. C#批量插入数据到Sqlserver中的四种方式 - 转

    先创建一个用来测试的数据库和表,为了让插入数据更快,表中主键采用的是GUID,表中没有创建任何索引.GUID必然是比自增长要快的,因为你生成一个GUID算法所花的时间肯定比你从数据表中重新查询上一条记 ...

  3. C#的RSA加密解密签名,就为了支持PEM PKCS#8格式密钥对的导入导出

    差点造了一整个轮子 .Net Framework 4.5 里面的RSA功能,并未提供简单对PEM密钥格式的支持(.Net Core有咩?),差点(还远着)造了一整个轮子,就为了支持PEM PKCS#8 ...

  4. Linux mount 命令

    mount 命令用来挂载文件系统.其基本命令格式为:mount -t type [-o options] device dirdevice:指定要挂载的设备,比如磁盘.光驱等.dir:指定把文件系统挂 ...

  5. CentOS7中安装redis5.0

    1. 环境介绍 CentOS7 (未安装Development Tools) 2. 下载Redis5.0-rc3 wget -O redis-5.0-rc3.tar.gz https://github ...

  6. json中获取key值

    <script type="text/javascript"> getJson('age'); function getJson(key){ var jsonObj={ ...

  7. Redis+Keepalived高可用环境部署记录

    Keepalived 实现VRRP(虚拟路由冗余)协议,从路由级别实现VIP切换,可以完全避免类似heartbeat脑裂问题,可以很好的实现主从.主备.互备方案,尤其是无状态业务,有状态业务就需要额外 ...

  8. libc.so.6: version 'GLIBC_2.14' not found报错提示的解决方案

    线上一台服务器在执行leveldb程序的时候,报错:"libc.so.6: version `GLIBC_2.14' not found". 排查原因及解决方法如下: 1)产生原因 ...

  9. mysqldump数据导出问题和客户端授权后连接失败问题

    1,使用mysqldump时报错(1064),这个是因为mysqldump版本太低与当前数据库版本不一致导致的.mysqldump: Couldn't execute 'SET OPTION SQL_ ...

  10. 回溯法解n皇后问题

    #include<bits/stdc++.h> using namespace std; int n,sum; int c[100]; void search(int cur){ if(c ...