【AGC005F】简单的问题 Many Easy Problems
Description
Solution
对于每个\(k\),统计任选\(k\)个点作为关键点的“最小生成树”的大小之和
正向想法是枚举或者计算大小为\(x\)、叶子数目为\(y\)的子树有多少种,然后贡献答案。这种方法参数多、难统计,可以感受到无法适应\(1e5\)的数据,舍弃
正难则反,自顶向下正向统计难,就考虑自底向上贡献统计。那么这里的自底向上,就应该是对于每一个点,统计其贡献到每个\(ans\)的次数,并累加。
既然要输出k=1...m的答案,可以猜到贡献是一个卷积加速的形式
所以先考虑每个点对某一个k的答案的贡献
任选k个点之后,一个点对答案有1的贡献,当且仅当选择的点不全在以其为根时的某棵子树中
这个很好统计,不全在某棵子树中这个条件很难考虑,不如直接用总数减去不合法的方案,毕竟所有元素用一个组合数就可以搞定\({n \choose k}-\sum_v {size_v\choose k}\)
则
\]
前一部分可以直接算,但后一部分看起来不是一个数组的卷积
遇到这种情况,我们可以用权值作为下标先做一个统计数组\(a[size_v]++\),因为统计时使用的数据与这个\(size_v\)具体是哪一个点的子树大小关系不大,而只和子树大小这个数值有关。因此不以每个点作为视角考虑(具体是谁不重要),而以整棵树为视角考虑,那么\(ans_k\)就会变成
\]
减法卷积算出每个\(ans_k\)的负部分即可
Code
#include <cstdio>
using namespace std;
namespace IO{
const int S=10000000;
char buf[S];
int pos;
void load(){
fread(buf,1,S,stdin);
pos=0;
}
char getChar(){
return buf[pos++];
}
int getInt(){
int x=0,f=1;
char c=getChar();
while(c<'0'||c>'9'){if(c=='-')f=-1;c=getChar();}
while('0'<=c&&c<='9'){x=x*10+c-'0';c=getChar();}
return x*f;
}
}
using IO::getInt;
const int N=200005;
const int MOD=924844033,G=5;
int n;
int h[N],tot;
struct Edge{
int v,next;
}e[N*2];
int size[N],sum[N];
int fact[N],iact[N];
inline void swap(int &x,int &y){
x^=y^=x^=y;
}
void addEdge(int u,int v){
e[++tot]=(Edge){v,h[u]}; h[u]=tot;
e[++tot]=(Edge){u,h[v]}; h[v]=tot;
}
void readData(){
n=getInt();
int u,v;
for(int i=1;i<n;i++){
u=getInt(); v=getInt();
addEdge(u,v);
}
}
void dfs(int u,int fa){
size[u]=1;
for(int i=h[u],v;i;i=e[i].next)
if((v=e[i].v)!=fa){
dfs(v,u);
size[u]+=size[v];
sum[size[v]]++;
}
sum[n-size[u]]++;
}
int fmi(int x,int y){
int res=1;
for(;y;x=1ll*x*x%MOD,y>>=1)
if(y&1)
res=1ll*res*x%MOD;
return res;
}
void init(){
fact[0]=1;
for(int i=1;i<=n;i++)
fact[i]=1ll*fact[i-1]*i%MOD;
iact[0]=iact[1]=1;
if(n>1){
iact[n]=fmi(fact[n],MOD-2);
for(int i=n-1;i>=2;i--)
iact[i]=1ll*iact[i+1]*(i+1)%MOD;
}
}
inline int C(int n,int m){
return m>n?0:1ll*fact[n]*iact[m]%MOD*iact[n-m]%MOD;
}
namespace NTT{/*{{{*/
const int S=N*4,B=19;
int n,invn,bit;
int rev[S],W[S][2];
void build(){
int iG=fmi(G,MOD-2);
for(int i=0;i<=B;i++){
W[1<<i][0]=fmi(G,(MOD-1)/(1<<i));
W[1<<i][1]=fmi(iG,(MOD-1)/(1<<i));
}
}
void init(int _n){
for(n=1,bit=0;n<_n;n<<=1,bit++);
invn=fmi(n,MOD-2);
for(int i=0;i<n;i++) rev[i]=(rev[i>>1]>>1)|((i&1)<<(bit-1));
}
void ntt(int *a,int f){
for(int i=0;i<n;i++) if(i<rev[i]) swap(a[i],a[rev[i]]);
int w_n,w,u,v;
for(int i=2;i<=n;i<<=1){
w_n=W[i][f];
for(int j=0;j<n;j+=i){
w=1;
for(int k=0;k<(i>>1);k++){
u=a[j+k];
v=1ll*w*a[j+(i>>1)+k]%MOD;
a[j+k]=(u+v)%MOD;
a[j+(i>>1)+k]=(u-v)%MOD;
w=1ll*w*w_n%MOD;
}
}
}
if(f)
for(int i=0;i<n;i++) a[i]=1ll*a[i]*invn%MOD;
}
}/*}}}*/
void solve(){
static int a[NTT::S],b[NTT::S];
for(int i=0;i<n;i++){
a[i]=1ll*sum[i]*fact[i]%MOD;
b[i]=iact[n-1-i];
}
NTT::init(n+n-1);
NTT::ntt(a,0);
NTT::ntt(b,0);
for(int i=0;i<NTT::n;i++) a[i]=1ll*a[i]*b[i]%MOD;
NTT::ntt(a,1);
// now a[n],a[n+1],... represent k=1,2,3,...
int ans;
for(int k=1;k<=n;k++){
ans=(1ll*n*C(n,k)%MOD-1ll*iact[k]*a[n-1+k]%MOD)%MOD;
printf("%d\n",ans<0?ans+MOD:ans);
}
}
int main(){
IO::load();
NTT::build();
readData();
dfs(1,0);
init();
solve();
return 0;
}
【AGC005F】简单的问题 Many Easy Problems的更多相关文章
- AtcoderGrandContest 005 F. Many Easy Problems
$ >AtcoderGrandContest \space 005 F. Many Easy Problems<$ 题目大意 : 有一棵大小为 \(n\) 的树,对于每一个 \(k \i ...
- 解题:AT2064 Many Easy Problems&EXNR #1 T3 两开花
题面 两道题比较像,放在一起写了,后者可以看成前者的加强版 (sto ztb orz) 先看AT那道题 考虑计算每个点的贡献,用容斥计算:每个点没有贡献当且仅当选的所有点都在以他为根时的一个子节点的子 ...
- Codeforces 913D - Too Easy Problems
913D - Too Easy Problems 思路:二分check k 代码: #include<bits/stdc++.h> using namespace std; #define ...
- 【AtCoder】AGC005 F - Many Easy Problems 排列组合+NTT
[题目]F - Many Easy Problems [题意]给定n个点的树,定义S为大小为k的点集,则f(S)为最小的包含点集S的连通块大小,求k=1~n时的所有点集f(S)的和取模92484403 ...
- 【CodeForces】913 D. Too Easy Problems
[题目]D. Too Easy Problems [题意]给定n个问题和总时限T,每个问题给定时间ti和限制ai,当解决的问题数k<=ai时问题有效,求在时限T内选择一些问题解决的最大有效问题数 ...
- 【AGC005F】Many Easy Problems FFT 容斥原理
题目大意 给你一棵树,有\(n\)个点.还给你了一个整数\(k\). 设\(S\)为树上某些点的集合,定义\(f(S)\)为最小的包含\(S\)的联通子图的大小. \(n\)个点选\(k\)个点一共有 ...
- 【AGC005F】Many Easy Problems (NTT)
Description 给你一棵\(~n~\)个点的树和一个整数\(~k~\).设为\(~S~\)为树上某些点的集合,定义\(~f(S)~\)为最小的包含\(~S~\)的联通子图的大小.\(~n~ ...
- AGC005F Many Easy Problems(NTT)
先只考虑求某个f(k).考虑转换为计算每条边的贡献,也即该边被所选连通块包含的方案数.再考虑转换为计算每条边不被包含的方案数.这仅当所选点都在该边的同一侧.于是可得f(k)=C(n,k)+ΣC(n,k ...
- 【AGC005F】Many Easy Problems
Description 题目链接 对于每个\(k\),统计任选\(k\)个点作为关键点的"最小生成树"的大小之和 Solution 正向想法是枚举或者计算大小为\(x\).叶子数目 ...
随机推荐
- [React]全自动数据表格组件——BodeGrid
表格是在后台管理系统中用的最频繁的组件之一,相关的功能有数据的新增和编辑.查询.排序.分页.自定义显示以及一些操作按钮.我们逐一深入进行探讨以及介绍我的设计思路: 新增和编辑 想想我们最开始写新增 ...
- 事件(event)
事件概述 委托是一种类型可以被实例化,而事件可以看作将多播委托进行封装的一个对象成员(简化委托调用列表增加和删除方法)但并非特殊的委托,保护订阅互不影响. 基础事件(event) 在.Net中声明事件 ...
- 如何打造网站克隆、仿站工具(C#版)
前两天朋友叫我模仿一个网站,刚刚开始,我一个页面一个页面查看源码并复制和保存,花了我很多时间,一个字“累”,为了减轻工作量,我写了个网站“克隆工具”,一键克隆,比起人工操作, 效率提高了200%以上, ...
- Fedora 19关闭防火墙
关闭防火墙systemctl stop firewalld.service 关闭开机启动防火墙systemctl disable firewalld.service
- 《Linux内核设计与实现》读书笔记三
Chapter 18 调 试 18.1 准备开始 1.准备工作: 一个bug 一个藏匿bug的内核版本 相关内核代码的知识和运气 2.执行foo就会让程序立即产生核心信息转储(dump core). ...
- 20150401 作业2 结对 四则运算ver 1.0
Web項目下 Tomcat服務器的路徑 /WebContant/ 目錄下 SE2_2.jsp <%@ page language="java" contentType=&qu ...
- Java web错误总结~
1.java程序中没有错,但是项目上面显示一个红叉的解决办法 错误信息: 报Description Resource Path Location Type Java compiler level d ...
- SQL语句及5.7.2 mysql 用户管理
一.用户的定义 1.1 用户名+主机域 此处为5.7.2版本的mysql当中password字段已改为authentication_string mysql> select user,host, ...
- 开源通用爬虫框架YayCrawler-开篇
各位好!从今天起,我将用几个篇幅的文字向大家介绍一下我的一个开源作品--YayCrawler,其在GitHub上的网址是:https://github.com/liushuishang/YayCraw ...
- 开源通用爬虫框架YayCrawler-页面的抽取规则定义
本节我将向大家介绍一下YayCrawler的核心-页面的抽取规则定义,这也是YayCrawler能够做到通用的主要原因之一.如果我要爬去不同的网站的数据,尽管他们的网站采用的开发技术不同.页面的结构不 ...