Description

平面上有N个点. 求出所有以这N个点为顶点的三角形的面积和 N<=3000

Input

第一行给出数字N,N在[3,3000] 下面N行给出N个点的坐标,其值在[0,10000]

Output

保留一位小数,误差不超过0.1

Sample Input

5

0 0

1 2

0 2

1 0

1 1

Sample Output

7.0

Solution

\(ans=\frac{1}{2}\sum_{i=1}^n\sum_{j=i+1}^n\sum_{k=j+1}^n|(y_j-y_i)(x_k-x_i)-(y_k-y_i)(x_j-x_i)|\)

枚举第一个点,求出其它点的相对坐标

然后为了去绝对值,让所有点按计较排序,保证叉积是正的

\(ans_i=\frac{1}{2}\sum_{j=i+1}^n\sum_{k=j+1}^ny_j*x_k-y_k*x_j\)

\(~~~~~~~~~=\frac{1}{2}(\sum_{j=i+1}^ny_j\sum_{k=j+1}^nx_k-\sum_{j=i+1}^nx_j\sum_{k=j+1}^ny_k)\)

对最后的 \(\sum\) 做前缀和就好了

#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
#define REP(a,b,c) for(register int a=(b),a##end=(c);a<=a##end;++a)
#define DEP(a,b,c) for(register int a=(b),a##end=(c);a>=a##end;--a)
const int MAXN=3000+10;
int n,cnt;
ld ans;
struct point{
int x,y;
inline bool operator < (const point &A) const {
return y<A.y;
};
};
point pt[MAXN];
struct cross{
int x,y;
ld k;
inline bool operator < (const cross &A) const {
return k>A.k;
};
};
cross cs[MAXN];
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
int main()
{
read(n);
REP(i,1,n)read(pt[i].x),read(pt[i].y);
std::sort(pt+1,pt+n+1);
REP(i,3,n)
{
REP(j,1,i-1)cs[j]=(cross){pt[i].x-pt[j].x,pt[i].y-pt[j].y,atan2((ld)(pt[i].x-pt[j].x),(ld)(pt[i].y-pt[j].y))};
std::sort(cs+1,cs+i);ld sx=0,sy=0;
REP(j,1,i-1)
{
if(j!=1)ans+=sx*(ld)cs[j].y-(ld)cs[j].x*sy;
sx+=(ld)cs[j].x,sy+=(ld)cs[j].y;
}
}
printf("%.1Lf\n",ans/2);
return 0;
}

【刷题】BZOJ 1132 [POI2008]Tro的更多相关文章

  1. bzoj 1132 [POI2008]Tro 几何

    [POI2008]Tro Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 1796  Solved: 604[Submit][Status][Discu ...

  2. bzoj 1132 POI2008 Tro

    大水题=_=,可我想复杂了…… 很裸的暴力,就是加了个小优化…… 叉积求面积 :abs(xi*yj - yi*xj) 所以去掉绝对值,把 xi 和 xj 提出来就可以求和了 去绝对值加个极角排序,每次 ...

  3. BZOJ.1132.[POI2008]Tro(极角排序)

    BZOJ 洛谷 考虑暴力,每次枚举三个点,答案就是\(\frac12\sum_{k<j<i}(i-k)\times(j-k)\). 注意到叉积有分配率,所以固定\(k\),枚举\(i,j\ ...

  4. BZOJ 1132 [POI2008]Tro(极角排序)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1132 [题目大意] 平面上有N个点. 求出所有以这N个点为顶点的三角形的面积和(N&l ...

  5. bzoj 1132: [POI2008]Tro 计算几何

    题目大意: 平面上有N个点. 求出所有以这N个点为顶点的三角形的面积和 N<=3000 题解 我们看到了n的范围,于是我们就知道这一定不是一个线性算法 所以我们尝试枚举三角形的一个点,那么我们现 ...

  6. 【BZOJ】1132: [POI2008]Tro

    题意 给\(n(1 \le n \le 3000)\)个点,求所有三角形的面积和. 分析 首先枚举一个点,发现把其它点按照关于这个点的极角排序后第\(i\)个点关于前面\(1\)到\(i-1\)的点组 ...

  7. BZOJ1132: [POI2008]Tro

    1132: [POI2008]Tro Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 815  Solved: 211[Submit][Status] ...

  8. bzoj1132[POI2008]Tro 计算几何

    1132: [POI2008]Tro Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 1722  Solved: 575[Submit][Status] ...

  9. 【刷题】BZOJ 2407 探险

    Description 探险家小T好高兴!X国要举办一次溶洞探险比赛,获奖者将得到丰厚奖品哦!小T虽然对奖品不感兴趣,但是这个大振名声的机会当然不能错过! 比赛即将开始,工作人员说明了这次比赛的规则: ...

随机推荐

  1. LiveCharts文档-3开始-5序列Series

    原文:LiveCharts文档-3开始-5序列Series LiveCharts文档-3开始-5序列Series Strokes和Fills 笔触和填充 所有的Series都有笔触和填充属来处理颜色, ...

  2. 设计模式-简单工厂Coding+jdk源码解析

    感谢慕课geely老师的设计模式课程,本套设计模式的所有内容均以课程为参考. 前面的软件设计七大原则,目前只有理论这块,因为最近参与项目重构,暂时没有时间把Coding的代码按照设计思路一点点写出来. ...

  3. GATT服务搜索流程(二)

    关于bta_dm_cb.p_sec_cback,这里我们之前已经分析过,他就是bte_dm_evt ,最终调用的函数btif_dm_upstreams_evt : static void btif_d ...

  4. mysqldump数据导出问题和客户端授权后连接失败问题

    1,使用mysqldump时报错(1064),这个是因为mysqldump版本太低与当前数据库版本不一致导致的.mysqldump: Couldn't execute 'SET OPTION SQL_ ...

  5. cocoapod Podfile use frameworks swift/oc混编 could not build module xxx

    前置: 知名的pod: AFNetworking 我自己的pod:  AFNetworking+RX  3.1.0.18 里面有一段代码是: #import <Foundation/Founda ...

  6. 算法模板学习专栏之总览(会慢慢陆续更新ing)

    博主欢迎转载,但请给出本文链接,我尊重你,你尊重我,谢谢~http://www.cnblogs.com/chenxiwenruo/p/7495310.html特别不喜欢那些随便转载别人的原创文章又不给 ...

  7. uml 图学习记录

    UML类图与类的关系详解   2011-04-21 来源:网络   在画类图的时候,理清类和类之间的关系是重点.类的关系有泛化(Generalization).实现(Realization).依赖(D ...

  8. Scrum Meeting 6

                第六次会议 由于之前队员一直在做数据库和编译大作业,课业压力较大,所以软工进度往后拖了好多. No_00:工作情况 No_01:任务说明 待完成 已完成 No_10:燃尽图 N ...

  9. "Linux内核分析"第六周实验报告

    张文俊 + 原创作品转载请注明出处 + <Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 1.进程的描述 ...

  10. 《Linux内核设计与实现》第一二章笔记

    第一章 linux内核简介 每个处理器在任何时间点上的活动必然概括为下列三者: 运行于用户空间,执行用户进程 运行于内核空间,处于进程上下文,代表某个特定的进程执行 运行于内核空间,处于中断上下文,与 ...