1.2 [what is machine learning?]
1.人:observation -->  learing  -->  skill
机器:data --> ML --> improved performance measure /skill
2.什么情况下适合使用机器学习:
(1)some 'underlying pattern' to be learned
(2)not easy(programmable) definition :不是很容易写出一些规则去处理
(3)data about the pattern : inputs
3.example(best suited ML):
(1)预测婴儿在下一次哪个时间点会哭?  no:  (1)no pattern
(2)判断一个图像中是否包含圆形?  yes   no: (2)很容易写definitioin/program
(3)判断是否给一个用户发放信用卡?  yes  :(1)user behavior (2)not easily program(3)data
(4)地球是否hi在未来十年因为滥用核能而毁灭? no: (3)no data yet

1.3[applications of ML]
1.Food(某家餐厅是否会引起食物中毒)
data:twitter+location
skill:tell food poisoning likeliness of restaurant
2.Clothing
data:sales figures销售数据 + client surveys顾客喜好
skill:give good recommendations to clients
3.Housing
data:characteristics of building and their energy load耗能状况
skill:predict energy load of other buildings closely
4.transportation
data:traffic sign images and meanings交通标志
skill:recognize traffic signs accurately
 5.Education
data:students' records on quizzes on a math tutoring system
skill:predict whether a student can give a correct answer to another quiz question
 
answer correctly~~[recent strength of student > difficulty of question]
data:9 million records from students
ML determines(reverse-engineers)  strength and difficult auto
6.Entertainment
data:how many users have rated some movies
skill:predict how a user would rate an unrated movie
 
data: 1亿 ratings that 480,189 users gave to 17,770 movies(Netflix 线上租赁DVD)
 1.4Formalize the learning problem
input:x->X
output:y->Y
f:X->Y
data: D{(x1,y1),(x2,y2),,,}
hypothesis -> skill  g:x->y
 
{(x n , y n )} from f  -->ML-->  g
A:algorithm
H:hypothesis     利用A从H的众多假设里选择一个最接近f的g.
 
1.5data mining数据挖掘/AI:Artificial Intelligence/Statistics
DM :use huge data to find property that is interesting
ML = DM(KDDCups)
AI:
ML can realize AI,
eg. 下棋:(传统方法:game tree; ML: learning from board data)
Statistics:use data to make inference about unknown process
    g is an inference outcome(预测推论的结果) ;f is something unknown

statistics can be used to achieve ML

[what is machine learning?]的更多相关文章

  1. 数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)的区别是什么? 数据科学(data science)和商业分析(business analytics)之间有什么关系?

    本来我以为不需要解释这个问题的,到底数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)有什么区别,但是前几天因为有个学弟问我,我想了想发现我竟然也回答 ...

  2. Example-based Machine Learning是什么?

    参考:https://christophm.github.io/interpretable-ml-book/proto.html EML简介 Example-based Machine Learnin ...

  3. 【Machine Learning】KNN算法虹膜图片识别

    K-近邻算法虹膜图片识别实战 作者:白宁超 2017年1月3日18:26:33 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结 ...

  4. 【Machine Learning】机器学习及其基础概念简介

    机器学习及其基础概念简介 作者:白宁超 2016年12月23日21:24:51 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结 ...

  5. 【Machine Learning】决策树案例:基于python的商品购买能力预测系统

    决策树在商品购买能力预测案例中的算法实现 作者:白宁超 2016年12月24日22:05:42 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本 ...

  6. 【机器学习Machine Learning】资料大全

    昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...

  7. [Machine Learning] Active Learning

    1. 写在前面 在机器学习(Machine learning)领域,监督学习(Supervised learning).非监督学习(Unsupervised learning)以及半监督学习(Semi ...

  8. [Machine Learning & Algorithm]CAML机器学习系列2:深入浅出ML之Entropy-Based家族

    声明:本博客整理自博友@zhouyong计算广告与机器学习-技术共享平台,尊重原创,欢迎感兴趣的博友查看原文. 写在前面 记得在<Pattern Recognition And Machine ...

  9. Machine Learning Algorithms Study Notes(6)—遗忘的数学知识

    机器学习中遗忘的数学知识 最大似然估计( Maximum likelihood ) 最大似然估计,也称为最大概似估计,是一种统计方法,它用来求一个样本集的相关概率密度函数的参数.这个方法最早是遗传学家 ...

随机推荐

  1. zip 的 压缩与解压

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/xiananliu/article/details/23993481 zip格式是开源的相比rar格式 ...

  2. 【知识碎片】getResource和getResourceAsStream

    1. 前言 在Java中获取资源的时候,经常用到getResource和getResourceAsStream,本文总结一下这两种获取资源文件的路径差异. 2.Class.getResource(St ...

  3. Linux_修改hosts

    文章转自 https://blog.csdn.net/mikyz/article/details/69399987 Windows用户XP的在C盘 C:WINDOWS/system32/drivers ...

  4. 使用cmd导出mysql数据到excel

    windows环境 (有时候复制的不好使,最好可以手动输入一次试试) 1.windows + R 输入cmd弹出命令框 2.cd  C:\Program Files\MySQL\MySQL Serve ...

  5. Android学习之基础知识九 — 数据存储(持久化技术)之使用LitePal操作数据库

    上一节学习了使用SQLiteDatabase来操作SQLite数据库的方法,接下来我们开始接触第一个开源库:LitePal.LitePal是一款开源的Android数据库框架,它采用了对象关系映射(O ...

  6. java 迭代器遍历List Set Map

    Iterator接口: 所有实现了Collection接口的容器类都有一个iterator方法用以返回一个实现Iterator接口的对象 Iterator对象称作为迭代器,用以方便的对容器内元素的遍历 ...

  7. Win10上运行Docker

    1. 前言 Docker最近推出了可以运行在Win10和Mac上的稳定版本,让我们赶紧来体验一下. Docker发布Mac和Windows 的目标非常简单——开发者可以更加简单方便地在研发机器上使用D ...

  8. 【小程序】模拟数据支持(mockjs配置模拟服务器接口数据)

    utils目录 ①下载mockjs(地址)放置utils目录中 ②新建api.js :配置模拟数据以及后台接口,通过DEBUG=ture;  //切换数据接口 配置如下: let API_HOST = ...

  9. Codeforces Hello 2019

    Hello 2019 手速场qwq 反正EGH太神仙了啊.jpg 考试的时候不会啊.jpg A 暴力.jpg #include <cstdio> #include <algorith ...

  10. 如何把js的代码写的更加容易维护(一)--面向对象编程

    总是头疼javascript的代码写起来不可维护,那么看看下面的代码: (function (w, $) { var app = { init: function () { var me = this ...