【51Nod1405】树上距离和 二次扫描与换根法
题目大意:给定一棵 N 个点的边权均为 1 的树,依次输出每个点到其他各个点的距离和。
题解:首先任意选定一个节点为根节点,比如 1,第一遍 dfs 遍历树求出子树大小、树上前缀和。第二遍 dfs 遍历这棵树,求出各个点的距离和。
对于遍历到的任意一个节点 i,对于与之相邻的节点 j 来说,答案贡献由 i 到 j 转移首先减小了 \(size[j]*1\),同时增加了 \((n-size[j])*1\),因此可以直接得到\(dp[j]=dp[i]+n-size[j]*2\)。
代码如下
#include <bits/stdc++.h>
using namespace std;
const int maxn=1e5+10;
inline int read(){
int x=0,f=1;char ch;
do{ch=getchar();if(ch=='-')f=-1;}while(!isdigit(ch));
do{x=x*10+ch-'0';ch=getchar();}while(isdigit(ch));
return f*x;
}
struct node{
int nxt,to;
}e[maxn<<1];
int tot=1,head[maxn];
int n,size[maxn],sum[maxn],dp[maxn];
inline void add_edge(int from,int to){
e[++tot]=node{head[from],to},head[from]=tot;
}
void read_and_parse(){
n=read();
for(int i=1;i<n;i++){
int from=read(),to=read();
add_edge(from,to),add_edge(to,from);
}
}
void dfs1(int u,int fa){
size[u]=1;
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;if(v==fa)continue;
sum[v]=sum[u]+1;
dfs1(v,u);
size[u]+=size[v];
}
dp[1]+=sum[u];
}
void dfs2(int u,int fa){
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;if(v==fa)continue;
dp[v]=dp[u]+n-(size[v]<<1);
dfs2(v,u);
}
}
void solve(){
dfs1(1,0),dfs2(1,0);
for(int i=1;i<=n;i++)printf("%d\n",dp[i]);
}
int main(){
read_and_parse();
solve();
return 0;
}
【51Nod1405】树上距离和 二次扫描与换根法的更多相关文章
- 题解 poj3585 Accumulation Degree (树形dp)(二次扫描和换根法)
写一篇题解,以纪念调了一个小时的经历(就是因为边的数组没有乘2 phhhh QAQ) 题目 题目大意:找一个点使得从这个点出发作为源点,流出的流量最大,输出这个最大的流量. 以这道题来介绍二次扫描和换 ...
- poj 3585 Accumulation Degree(二次扫描和换根法)
Accumulation Degree 大致题意:有一棵流量树,它的每一条边都有一个正流量,树上所有度数为一的节点都是出口,相应的树上每一个节点都有一个权值,它表示从这个节点向其他出口可以输送的最大总 ...
- 【POJ3585】Accumulation Degree 二次扫描与换根法
简单来说,这是一道树形结构上的最大流问题. 朴素的解法是可以以每个节点为源点,单独进行一次dp,时间复杂度是\(O(n^2)\) 但是在朴素求解的过程中,相当于每次都求解了一次整棵树的信息,会做了不少 ...
- poj3585 树形dp 二次扫描,换根法模板题
#include<iostream> #include<cstring> #include<cstdio> #include<vector> using ...
- POJ3585 Accumulation Degree(二次扫描与换根法)
题目:http://poj.org/problem?id=3585 很容易想出暴力.那么就先扫一遍. 然后得到了指定一个根后每个点的子树值. 怎么转化利用一下呢?要是能找出当前点的父亲的 “ 不含当前 ...
- poj - 3585(二次扫描与换根法)
周末牛客挂了个更难的,这个简单一些 #include<iostream> #include<cstring> #include<cstdio> #include&l ...
- $Poj3585\ Accumulation Degree$ 树形$DP/$二次扫描与换根法
Poj Description 有一个树形的水系,由n-1条河道与n个交叉点组成.每条河道有一个容量,联结x与y的河道容量记为c(x,y),河道的单位时间水量不能超过它的容量.有一个结点是整个水系的发 ...
- [LuoguP1829]Crash的文明表格(二次扫描与换根+第二类斯特林数)
Solution: 由于 \[ x^m = \sum_{i=0}^m{~m~\choose i}{~x~\brace i}i! \] 将所求的式子化成这样,挖掘其性质,考虑是否能从儿子转移(或 ...
- POJ - 3585 树上最大流 换根法
题意:给出一棵树,边上有容量限制,求以任一点作为根和源点,叶子作为汇点的最大流的最大值 首先上网络流等于找死 树形DP可以\(O(n)\)求出以某点\(u\)为根的最大流,只需设\(f[u]=\sum ...
随机推荐
- Log4net_简单使用
log4net 有四种主要的组件,分别是Logger(记录器), Repository(库), Appender(附着器)以及 Layout(布局). 第一步:Log4net的安装 Install-P ...
- 普通程序员看k8s基于角色的访问控制(RBAC)
一.知识准备 ● 上一节描述了k8s的账户管理,本文描述基于角色的访问控制 ● 网上RBAC的文章非常多,具体概念大神们也解释得很详细,本文没有站在高屋建瓴的角度去描述RBAC,而是站在一个普通程序员 ...
- Redis常用操作-----字符串
1.APPEND key value 如果 key 已经存在并且是一个字符串, APPEND 命令将 value 追加到 key 原来的值的末尾. 如果 key 不存在, APPEND 就简单地将给定 ...
- #个人博客作业week2——关于代码规范的个人观点
对于这一讨论的前提我们首先要知道什么是代码规范. 在这个问题上我同意一篇参考文章的观点——代码规范不仅只编码风格.编码风格仅是代码规范的一个方面,除了编码风格,代码规范还包括函数返回值等其他方面.在我 ...
- 五子棋游戏SRS
一.功能需求 1.绘制棋子 2.绘制界面 3.绘制棋盘 4.实现通过鼠标下棋并判断棋子是否落在棋盘上 6.判断胜负 二.用例图 玩家用例图: 1.落子:玩家鼠标点击最近的落子点落子.2.电脑先落子:选 ...
- Java计算器(结对)
一:题目简介 我们要做的是一个多功能计算器,Java程序编辑器是:图形界面.线程.流与文件等技术的综合应用. 图形界面的实现:考虑到简单.实用.高效等特点,就选择了Swing来完成实现,在选择组件上, ...
- react 动态获取数据
如果reander()里面的dom元素是动态获取的,就要将函数放到setSTATE()里面执行
- HDU 2087 剪花布条 (字符串哈希)
http://acm.hdu.edu.cn/showproblem.php?pid=2087 Problem Description 一块花布条,里面有些图案,另有一块直接可用的小饰条,里面也有一些图 ...
- Tools (StExBar vs Cmder)which can switch to command line window on context menu in windows OS
https://tools.stefankueng.com/StExBar.html https://github.com/cmderdev/cmder
- Java用JSoup组件提取asp.net webform开发网页的viewstate相关相关参数
/** * 从页面中提取特定input的的Value * @param formparams * @param document * @param elementId */ private void ...