UVa 437 The Tower of Babylon(DP 最长条件子序列)
题意 给你n种长方体 每种都有无穷个 当一个长方体的长和宽都小于还有一个时 这个长方体能够放在还有一个上面 要求输出这样累积起来的最大高度
由于每一个长方体都有3种放法 比較不好控制 能够把一个长宽高分成三个长方体 高度是固定的 这样就比較好控制了
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define maxn 105
int x[maxn], y[maxn], z[maxn], d[maxn], n;
int dp(int i)
{
if(d[i] > 0) return d[i];
d[i] = z[i];
for(int j = 1; j <= n; ++j)
{
if((x[i] > x[j] && y[i] > y[j]) || (x[i] > y[j] && y[i] > x[j]))
d[i] = max(d[i], dp(j) + z[i]);
}
return d[i];
} int main()
{
int a, b, c, cas = 1;
while (scanf("%d", &n), n)
{
n *= 3;
for(int i = 1; i <= n;)
{
scanf("%d%d%d", &a, &b, &c);
x[i] = a; y[i] = b; z[i++] = c;
x[i] = a; y[i] = c; z[i++] = b;
x[i] = b; y[i] = c; z[i++] = a;
} int ans = 0;
memset(d, 0, sizeof(d));
for(int i = 1; i <= n; ++i)
ans = max(dp(i), ans);
printf("Case %d: maximum height = %d\n", cas, ans); cas++;
}
return 0;
}
| The Tower of Babylon |
Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details of this tale have been forgotten. So now, in line with the educational nature of this contest, we will tell
you the whole story:
The babylonians had n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions
.
A block could be reoriented so that any two of its three dimensions determined the dimensions of the base and the other dimension was the height. They wanted to construct the tallest tower possible by stacking blocks. The problem was that, in building a tower,
one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly smaller than the corresponding base dimensions of the lower block. This meant, for example, that blocks oriented to have equal-sized
bases couldn't be stacked.
Your job is to write a program that determines the height of the tallest tower the babylonians can build with a given set of blocks.
Input
and Output
The input file will contain one or more test cases. The first line of each test case contains an integer n, representing the number of different blocks in the following data set. The
maximum value for n is 30. Each of the next n lines contains three integers representing the values
,
and
.
Input is terminated by a value of zero (0) for n.
For each test case, print one line containing the case number (they are numbered sequentially starting from 1) and the height of the tallest possible tower in the format "Case case:
maximum height = height"
Sample
Input
1
10 20 30
2
6 8 10
5 5 5
7
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
5
31 41 59
26 53 58
97 93 23
84 62 64
33 83 27
0
Sample
Output
Case 1: maximum height = 40
Case 2: maximum height = 21
Case 3: maximum height = 28
Case 4: maximum height = 342
UVa 437 The Tower of Babylon(DP 最长条件子序列)的更多相关文章
- UVA - 437 The Tower of Babylon(dp-最长递增子序列)
每一个长方形都有六种放置形态,其实可以是三种,但是判断有点麻烦直接用六种了,然后按照底面积给这些形态排序,排序后就完全变成了LIS的问题.代码如下: #include<iostream> ...
- UVa 437 The Tower of Babylon(经典动态规划)
传送门 Description Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details ...
- UVa 437 The Tower of Babylon
Description Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details of ...
- UVA 437 The Tower of Babylon(DAG上的动态规划)
题目大意是根据所给的有无限多个的n种立方体,求其所堆砌成的塔最大高度. 方法1,建图求解,可以把问题转化成求DAG上的最长路问题 #include <cstdio> #include &l ...
- DP(DAG) UVA 437 The Tower of Babylon
题目传送门 题意:给出一些砖头的长宽高,砖头能叠在另一块上要求它的长宽都小于下面的转头的长宽,问叠起来最高能有多高 分析:设一个砖头的长宽高为x, y, z,那么想当于多了x, z, y 和y, x, ...
- UVA 437 The Tower of Babylon巴比伦塔
题意:有n(n≤30)种立方体,每种有无穷多个.要求选一些立方体摞成一根尽量高的柱子(可以自行选择哪一条边作为高),使得每个立方体的底面长宽分别严格小于它下方立方体的底面长宽. 评测地址:http:/ ...
- UVA 437 "The Tower of Babylon" (DAG上的动态规划)
传送门 题意 有 n 种立方体,每种都有无穷多个. 要求选一些立方体摞成一根尽量高的柱子(在摞的时候可以自行选择哪一条边作为高): 立方体 a 可以放在立方体 b 上方的前提条件是立方体 a 的底面长 ...
- uva 10131 Is Bigger Smarter ? (简单dp 最长上升子序列变形 路径输出)
题目链接 题意:有好多行,每行两个数字,代表大象的体重和智商,求大象体重越来越大,智商越来越低的最长序列,并输出. 思路:先排一下序,再按照最长上升子序列计算就行. 还有注意输入, 刚开始我是这样输入 ...
- UVA 10131 Is Bigger Smarter?(DP最长上升子序列)
Description Question 1: Is Bigger Smarter? The Problem Some people think that the bigger an elepha ...
随机推荐
- JavaScript中数组Array.sort()排序方法详解
JavaScript中数组的sort()方法主要用于对数组的元素进行排序.其中,sort()方法有一个可选参数.但是,此参数必须是函数. 数组在调用sort()方法时,如果没有传参将按字母顺序(字符编 ...
- web前端性能优化,提升静态文件的加载速度
原文地址:传送门 WeTest 导读 此文总结了笔者在Web静态资源方面的一些优化经验. 如何优化 用户在访问网页时, 最直观的感受就是页面内容出来的速度,我们要做的优化工作, 也主要是为了这个目标. ...
- Codeforces Round #320 (Div. 2) [Bayan Thanks-Round] A. Raising Bacteria【位运算/二进制拆分/细胞繁殖,每天倍增】
A. Raising Bacteria time limit per test 1 second memory limit per test 256 megabytes input standard ...
- POJ 2524 Ubiquitous Religions (并查集)
Description 当今世界有很多不同的宗教,很难通晓他们.你有兴趣找出在你的大学里有多少种不同的宗教信仰.你知道在你的大学里有n个学生(0 < n <= 50000).你无法询问每个 ...
- Ngnix 安装常见错误的处理
错误: 解决方案:(联网下) 出现上面的问题是由于没有c++编译器造成 # yum -y install gcc-c++ 使用上面的命令即可安装c++解决问题 如果确实c编译器,使用如下命令解 ...
- EL的函数与标签
1 什么EL函数库 EL函数库是由第三方对EL的扩展,我们现在学习的EL函数库是由JSTL添加的.下面我们会学习JSTL标签库. EL函数库就是定义一些有返回值的静态方法.然后通过EL语言来调用它们! ...
- HDU 6396 Swordsman --------2018 Multi-University Training Contest 7 (模拟+读入挂)
原题地址: 打怪升级 一开始有N个怪物:主角有K个能力:只有K个能力都击败怪物才能斩杀怪物并获得K个能力的增值:问最多能杀几个怪物: 做法: 用优先队列把怪物能力装进去:能力小放前面: 最重要的是数据 ...
- [POJ 3378] Crazy Thairs
Link: POJ 3378 传送门 Solution: 按序列长度$dp$, 设$dp[i][j]$为到第$i$个数,符合要求的序列长度为$j$时的序列个数, 易得转移方程:$dp[i][j]=\s ...
- Android 更新UI的两种方法——handler和runOnUiThread()
今天看到了一个runOnUiThread()方法用来更新UI,觉得很神奇!! 方法一:handler机制不说了. 方法二:利用Activity.runOnUiThread(Runnable)把更新ui ...
- MySQL中in子查询会导致无法使用索引问题(转)
MySQL的测试环境 测试表如下 create table test_table2 ( id int auto_increment primary key, pay_id int, pay_time ...