题意  给你n种长方体  每种都有无穷个  当一个长方体的长和宽都小于还有一个时  这个长方体能够放在还有一个上面  要求输出这样累积起来的最大高度

由于每一个长方体都有3种放法  比較不好控制   能够把一个长宽高分成三个长方体  高度是固定的  这样就比較好控制了

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define maxn 105
int x[maxn], y[maxn], z[maxn], d[maxn], n;
int dp(int i)
{
if(d[i] > 0) return d[i];
d[i] = z[i];
for(int j = 1; j <= n; ++j)
{
if((x[i] > x[j] && y[i] > y[j]) || (x[i] > y[j] && y[i] > x[j]))
d[i] = max(d[i], dp(j) + z[i]);
}
return d[i];
} int main()
{
int a, b, c, cas = 1;
while (scanf("%d", &n), n)
{
n *= 3;
for(int i = 1; i <= n;)
{
scanf("%d%d%d", &a, &b, &c);
x[i] = a; y[i] = b; z[i++] = c;
x[i] = a; y[i] = c; z[i++] = b;
x[i] = b; y[i] = c; z[i++] = a;
} int ans = 0;
memset(d, 0, sizeof(d));
for(int i = 1; i <= n; ++i)
ans = max(dp(i), ans);
printf("Case %d: maximum height = %d\n", cas, ans); cas++;
}
return 0;
}

 The Tower of Babylon 

Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details of this tale have been forgotten. So now, in line with the educational nature of this contest, we will tell
you the whole story:

The babylonians had n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions  .
A block could be reoriented so that any two of its three dimensions determined the dimensions of the base and the other dimension was the height. They wanted to construct the tallest tower possible by stacking blocks. The problem was that, in building a tower,
one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly smaller than the corresponding base dimensions of the lower block. This meant, for example, that blocks oriented to have equal-sized
bases couldn't be stacked.

Your job is to write a program that determines the height of the tallest tower the babylonians can build with a given set of blocks.

Input
and Output

The input file will contain one or more test cases. The first line of each test case contains an integer n, representing the number of different blocks in the following data set. The
maximum value for n is 30. Each of the next n lines contains three integers representing the values  ,  and  .

Input is terminated by a value of zero (0) for n.

For each test case, print one line containing the case number (they are numbered sequentially starting from 1) and the height of the tallest possible tower in the format "Case case:
maximum height =
 height"

Sample
Input

1
10 20 30
2
6 8 10
5 5 5
7
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
5
31 41 59
26 53 58
97 93 23
84 62 64
33 83 27
0

Sample
Output

Case 1: maximum height = 40
Case 2: maximum height = 21
Case 3: maximum height = 28
Case 4: maximum height = 342

UVa 437 The Tower of Babylon(DP 最长条件子序列)的更多相关文章

  1. UVA - 437 The Tower of Babylon(dp-最长递增子序列)

    每一个长方形都有六种放置形态,其实可以是三种,但是判断有点麻烦直接用六种了,然后按照底面积给这些形态排序,排序后就完全变成了LIS的问题.代码如下: #include<iostream> ...

  2. UVa 437 The Tower of Babylon(经典动态规划)

    传送门 Description Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details ...

  3. UVa 437 The Tower of Babylon

    Description   Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details of ...

  4. UVA 437 The Tower of Babylon(DAG上的动态规划)

    题目大意是根据所给的有无限多个的n种立方体,求其所堆砌成的塔最大高度. 方法1,建图求解,可以把问题转化成求DAG上的最长路问题 #include <cstdio> #include &l ...

  5. DP(DAG) UVA 437 The Tower of Babylon

    题目传送门 题意:给出一些砖头的长宽高,砖头能叠在另一块上要求它的长宽都小于下面的转头的长宽,问叠起来最高能有多高 分析:设一个砖头的长宽高为x, y, z,那么想当于多了x, z, y 和y, x, ...

  6. UVA 437 The Tower of Babylon巴比伦塔

    题意:有n(n≤30)种立方体,每种有无穷多个.要求选一些立方体摞成一根尽量高的柱子(可以自行选择哪一条边作为高),使得每个立方体的底面长宽分别严格小于它下方立方体的底面长宽. 评测地址:http:/ ...

  7. UVA 437 "The Tower of Babylon" (DAG上的动态规划)

    传送门 题意 有 n 种立方体,每种都有无穷多个. 要求选一些立方体摞成一根尽量高的柱子(在摞的时候可以自行选择哪一条边作为高): 立方体 a 可以放在立方体 b 上方的前提条件是立方体 a 的底面长 ...

  8. uva 10131 Is Bigger Smarter ? (简单dp 最长上升子序列变形 路径输出)

    题目链接 题意:有好多行,每行两个数字,代表大象的体重和智商,求大象体重越来越大,智商越来越低的最长序列,并输出. 思路:先排一下序,再按照最长上升子序列计算就行. 还有注意输入, 刚开始我是这样输入 ...

  9. UVA 10131 Is Bigger Smarter?(DP最长上升子序列)

    Description   Question 1: Is Bigger Smarter? The Problem Some people think that the bigger an elepha ...

随机推荐

  1. [BZOJ4990][Usaco2017 Feb]Why Did the Cow Cross the Road II dp

    4990: [Usaco2017 Feb]Why Did the Cow Cross the Road II Time Limit: 10 Sec  Memory Limit: 128 MBSubmi ...

  2. windows7_64位安装sql_server_2000成功

    对于4合一的版本来说只要找到安装包里的 STANDARD.PERSONAL.ENTERPRISE.DEVELOPER文件夹下的 X86\SETUP\SETUPSQL.EXE 任何一个运行即可,(理论上 ...

  3. POJ 2528.Mayor's posters-线段树(成段替换、离散数据、简单hash)

    POJ2528.Mayor's posters 这道题真的是线段数的经典的题目,因为数据很大,直接建树的话肯定不可以,所以需要将数据处理一下,没有接触离散化的时候感觉离散化这个东西相当高级,其实在不知 ...

  4. Codeforces 798 B. Mike and strings-String的find()函数

    好久好久好久之前的一个题,今天翻cf,发现这个题没过,补一下. B. Mike and strings time limit per test 2 seconds memory limit per t ...

  5. java序列化的机制与原理

    有关Java对象的序列化和反序列化也算是Java基础的一部分,下面对Java序列化的机制和原理进行一些介绍. Java序列化算法透析 Serialization(序列化)是一种将对象以一连串的字节描述 ...

  6. POJ3261 Milk Patterns(二分+后缀数组)

    题目求最长的重复k次可重叠子串. 与POJ1743同理. 二分枚举ans判定是否成立 height分组,如果大于等于ans的组里的个数大于等于k-1,这个ans就可行 #include<cstd ...

  7. iOS isa 浅析

    看见一到面试题讲述一下Objective-C中的isa?完全没听说过,打算小研究一下. 参考:http://blog.sina.com.cn/s/blog_7a2ffd5c01010nme.html ...

  8. python正则表达式-re模块

    目录: 一.正则函数 二.re模块调用 三.贪婪模式 四.分组 五.正则表达式修饰符 六.正则表达式模式 七.常见的正则表达式 导读: 想要使用python的正则表达式功能就需要调用re模块,re模块 ...

  9. SQL获取当月天数的几种方法

    原文:SQL获取当月天数的几种方法 日期直接减去int类型的数字 等于 DATEADD(DAY,- 数字,日期) 下面三种方法: 1,日期加一个月减去当前天数,相当于这个月最后一天的日期.然后获取天数 ...

  10. ArcMAP中如何将16位保存的卫星底图,转变为8位表示

    首先说明,这种转换将会去除影像的投影像素的定义,并在转换后变为黑色的部分.16位的存储,一方面也是定义透明非数据像素点表示的方便.但是这种定义直接加大了影像的大小,不便于与CAD等软件进行交换数据.