python并发编程之多线程2死锁与递归锁,信号量等
一、死锁现象与递归锁
进程也是有死锁的
所谓死锁: 是指两个或两个以上的进程或线程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,
这些永远在互相等待的进程称为死锁进程
如下就是死锁
死锁-------------------
from threading import Thread,Lock,RLock
import time
mutexA = Lock()
mutexB = Lock()
class MyThread(Thread):
def run(self):
self.f1()
self.f2()
def f1(self):
mutexA.acquire()
print('\033[33m%s 拿到A锁 '%self.name)
mutexB.acquire()
print('\033[45%s 拿到B锁 '%self.name)
mutexB.release()
mutexA.release()
def f2(self):
mutexB.acquire()
print('\033[33%s 拿到B锁 ' % self.name)
time.sleep(1) #睡一秒就是为了保证A锁已经被别人那到了
mutexA.acquire()
print('\033[45m%s 拿到B锁 ' % self.name)
mutexA.release()
mutexB.release()
if __name__ == '__main__':
for i in range(10):
t = MyThread()
t.start() #一开启就会去调用run方法 死锁现象
那么怎么解决死锁现象呢?
解决方法,递归锁:在Python中为了支持在同一线程中多次请求同一资源,python提供了可重入锁RLock。
这个RLock内部维护着一个Lock和一个counter变量,counter记录了acquire的次数,从而使得资源可以被多次require。
直到一个线程所有的acquire都被release,其他的线程才能获得资源。上面的例子如果使用RLock代替Lock,则不会发生死锁
mutexA=mutexB=threading.RLock() #一个线程拿到锁,counter加1,该线程内又碰到加锁的情况,
则counter继续加1,这期间所有其他线程都只能等待,等待该线程释放所有锁,即counter递减到0为止
# 2.解决死锁的方法--------------递归锁
from threading import Thread,Lock,RLock
import time
mutexB = mutexA = RLock()
class MyThread(Thread):
def run(self):
self.f1()
self.f2()
def f1(self):
mutexA.acquire()
print('\033[33m%s 拿到A锁 '%self.name)
mutexB.acquire()
print('\033[45%s 拿到B锁 '%self.name)
mutexB.release()
mutexA.release()
def f2(self):
mutexB.acquire()
print('\033[33%s 拿到B锁 ' % self.name)
time.sleep(1) #睡一秒就是为了保证A锁已经被别人拿到了
mutexA.acquire()
print('\033[45m%s 拿到B锁 ' % self.name)
mutexA.release()
mutexB.release()
if __name__ == '__main__':
for i in range(10):
t = MyThread()
t.start() #一开启就会去调用run方法 解决死锁
二、信号量Semaphore(其实也是一把锁)
Semaphore管理一个内置的计数器
Semaphore与进程池看起来类似,但是是完全不同的概念。
进程池:Pool(4),最大只能产生四个进程,而且从头到尾都只是这四个进程,不会产生新的。
信号量:信号量是产生的一堆进程/线程,即产生了多个任务都去抢那一把锁
from threading import Thread,Semaphore,currentThread
import time,random
sm = Semaphore(5) #运行的时候有5个人
def task():
sm.acquire()
print('\033[42m %s去洗手间'%currentThread().getName())
time.sleep(random.randint(1,3))
print('\033[31m %s上完厕所走了'%currentThread().getName())
sm.release()
if __name__ == '__main__':
for i in range(20): #开了10个线程 ,这20人都要去洗手间
t = Thread(target=task)
t.start() Semaphore举例
hread-1去洗手间
Thread-2去洗手间
Thread-3去洗手间
Thread-4去洗手间
Thread-5去洗手间
Thread-3去完洗手间走了
Thread-6去洗手间
Thread-1去完洗手间走了
Thread-7去洗手间
Thread-2去完洗手间走了
Thread-8去洗手间
Thread-6去完洗手间走了
Thread-5去完洗手间走了
Thread-4去完洗手间走了
Thread-9去洗手间
Thread-10去洗手间
Thread-11去洗手间
Thread-9去完洗手间走了
Thread-12去洗手间
Thread-7去完洗手间走了
Thread-13去洗手间
Thread-10去完洗手间走了
Thread-8去完洗手间走了
Thread-14去洗手间
Thread-15去洗手间
Thread-12去完洗手间走了
Thread-11去完洗手间走了
Thread-16去洗手间
Thread-17去洗手间
Thread-14去完洗手间走了
Thread-15去完洗手间走了
Thread-17去完洗手间走了
Thread-18去洗手间
Thread-19去洗手间
Thread-20去洗手间
Thread-13去完洗手间走了
Thread-20去完洗手间走了
Thread-16去完洗手间走了
Thread-18去完洗手间走了
Thread-19去完洗手间走了 运行结果
三、Event
如果有线程等待一个Event对象, 而这个Event对象的标志为假,那么这个线程将会被一直阻塞直至该标志为真。一个线程如果将一个Event对象的信号标志设置为真,它将唤醒所有等待这个Event对象的线程。如果一个线程等待一个已经被设置为真的Event对象,那么它将忽略这个事件, 继续执行
from threading import Event
Event.isSet() #返回event的状态值
Event.wait() #如果 event.isSet()==False将阻塞线程;
Event.set() #设置event的状态值为True,所有阻塞池的线程激活进入就绪状态, 等待操作系统调度;
Event.clear() #恢复
例如1.,有多个工作线程尝试链接MySQL,我们想要在链接前确保MySQL服务正常才让那些工作线程去连接MySQL服务器,如果连接不成功,都会去尝试重新连接。那么我们就可以采用threading.Event机制来协调各个工作线程的连接操作
#首先定义两个函数,一个是连接数据库
# 一个是检测数据库
from threading import Thread,Event,currentThread
import time
e = Event()
def conn_mysql():
'''链接数据库'''
count = 1
while not e.is_set(): #当没有检测到时候
if count >3: #如果尝试次数大于3,就主动抛异常
raise ConnectionError('尝试链接的次数过多')
print('\033[45m%s 第%s次尝试'%(currentThread(),count))
e.wait(timeout=1) #等待检测(里面的参数是超时1秒)
count+=1
print('\033[44m%s 开始链接...'%(currentThread().getName()))
def check_mysql():
'''检测数据库'''
print('\033[42m%s 检测mysql...' % (currentThread().getName()))
time.sleep(5)
e.set()
if __name__ == '__main__':
for i in range(3): #三个去链接
t = Thread(target=conn_mysql)
t.start()
t = Thread(target=check_mysql)
t.start() 详看
2.例如2,红绿灯的例子
from threading import Thread,Event,currentThread
import time
e = Event()
def traffic_lights():
'''红绿灯'''
time.sleep(5)
e.set()
def car():
'''车'''
print('\033[42m %s 等绿灯\033[0m'%currentThread().getName())
e.wait()
print('\033[44m %s 车开始通行' % currentThread().getName())
if __name__ == '__main__':
for i in range(10):
t = Thread(target=car) #10辆车
t.start()
traffic_thread = Thread(target=traffic_lights) #一个红绿灯
traffic_thread.start() 红绿灯
四、定时器(Timer)
指定n秒后执行某操作
from threading import Timer
def func(n):
print('hello,world',n)
t = Timer(3,func,args=(123,)) #等待三秒后执行func函数,因为func函数有参数,那就再传一个参数进去
t.start()
五、线程queue
queue队列 :使用import queue,用法与进程Queue一样
queue.Queue(maxsize=0) #先进先出
# 1.队列-----------
import queue
q = queue.Queue(3) #先进先出
q.put('first')
q.put('second')
q.put('third')
print(q.get())
print(q.get())
print(q.get())
queue.LifoQueue(maxsize=0)#先进后出
# 2.堆栈----------
q = queue.LifoQueue() #先进后出(或者后进先出)
q.put('first')
q.put('second')
q.put('third')
q.put('for')
print(q.get())
print(q.get())
print(q.get())
queue.PriorityQueue(maxsize=0) #存储数据时可设置优先级的队列
# ----------------
'''3.put进入一个元组,元组的第一个元素是优先级
(通常也可以是数字,或者也可以是非数字之间的比较)
数字越小,优先级越高'''
q = queue.PriorityQueue()
q.put((20,'a'))
q.put((10,'b')) #先出来的是b,数字越小优先级越高嘛
q.put((30,'c'))
print(q.get())
print(q.get())
print(q.get())
六、多线程性能测试
1.多核也就是多个CPU
(1)cpu越多,提高的是计算的性能
(2)如果程序是IO操作的时候(多核和单核是一样的),再多的cpu也没有意义。
2.实现并发
第一种:一个进程下,开多个线程
第二种:开多个进程
3.多进程:
优点:可以利用多核
缺点:开销大
4.多线程
优点:开销小
缺点:不可以利用多核
5多进程和多进程的应用场景
1.计算密集型:也就是计算多,IO少
如果是计算密集型,就用多进程(如金融分析等)
2.IO密集型:也就是IO多,计算少
如果是IO密集型的,就用多线程(一般遇到的都是IO密集型的)
下例子练习:
# 计算密集型的要开启多进程
from multiprocessing import Process
from threading import Thread
import time
def work():
res = 0
for i in range(10000000):
res+=i
if __name__ == '__main__':
l = []
start = time.time()
for i in range(4):
p = Process(target=work) #1.9371106624603271 #可以利用多核(也就是多个cpu)
# p = Thread(target=work) #3.0401737689971924
l.append(p)
p.start()
for p in l:
p.join()
stop = time.time()
print('%s'%(stop-start)) 计算密集型
# I/O密集型要开启多线程
from multiprocessing import Process
from threading import Thread
import time
def work():
time.sleep(3)
if __name__ == '__main__':
l = []
start = time.time()
for i in range(400):
# p = Process(target=work) #34.9549994468689 #因为开了好多进程,它的开销大,花费的时间也就长了
p = Thread(target=work) #2.2151265144348145 #当开了多个线程的时候,它的开销小,花费的时间也小了
l.append(p)
p.start()
for i in l :
i.join()
stop = time.time()
print('%s'%(stop-start)) I/O密集型
python并发编程之多线程2死锁与递归锁,信号量等的更多相关文章
- python并发编程之多线程2---(死锁与递归锁,信号量等)
一.死锁现象与递归锁 进程也是有死锁的 所谓死锁: 是指两个或两个以上的进程或线程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用, 它们都将无法推进下去.此时称系统处于死锁状态或系统 ...
- Python并发编程04 /多线程、生产消费者模型、线程进程对比、线程的方法、线程join、守护线程、线程互斥锁
Python并发编程04 /多线程.生产消费者模型.线程进程对比.线程的方法.线程join.守护线程.线程互斥锁 目录 Python并发编程04 /多线程.生产消费者模型.线程进程对比.线程的方法.线 ...
- Python并发编程之多线程使用
目录 一 开启线程的两种方式 二 在一个进程下开启多个线程与在一个进程下开启多个子进程的区别 三 练习 四 线程相关的其他方法 五 守护线程 六 Python GIL(Global Interpret ...
- python 并发编程之多线程
一.线程理论 1.什么是线程 多线程(即多个控制线程)的概念是,在一个进程中存在多个线程,多个线程共享该进程的地址空间,相当于一个车间内有多条流水线,都共用一个车间的资源. 所以,进程只是用来把资 ...
- 30 python 并发编程之多线程
一 threading模块介绍 multiprocess模块的完全模仿了threading模块的接口,二者在使用层面,有很大的相似性,因而不再详细介绍 官网链接:https://docs.python ...
- 三 python并发编程之多线程-重点
一 threading模块介绍 multiprocess模块的完全模仿了threading模块的接口,二者在使用层面,有很大的相似性,因而不再详细介绍 二 开启线程的两种方式 #方式一 from th ...
- 第十篇.4、python并发编程之多线程
一 threading模块介绍 multiprocess模块的完全模仿了threading模块的接口,二者在使用层面,有很大的相似性,因而不再详细介绍 官网链接:https://docs.python ...
- 36、python并发编程之多线程(操作篇)
目录: 一 threading模块介绍 二 开启线程的两种方式 三 在一个进程下开启多个线程与在一个进程下开启多个子进程的区别 四 练习 五 线程相关的其他方法 六 守护线程 七 Python GIL ...
- python并发编程之线程(二):死锁和递归锁&信号量&定时器&线程queue&事件evevt
一 死锁现象与递归锁 进程也有死锁与递归锁,在进程那里忘记说了,放到这里一切说了额 所谓死锁: 是指两个或两个以上的进程或线程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将 ...
随机推荐
- python初学者总结
学习python首先配置好工作环境,因为不同版本之间的python是不兼容了 原创:01coding.com win7安装环境过程: 1:下载python 建议下载两个不同版本官方已给出 https: ...
- did not find a matching property (tomcat+Eclipse 报错)
警告: [SetPropertiesRule]{Server/Service/Engine/Host/Context} Setting property 'source' to 'org.eclips ...
- 坑爹的Hibernate 映射文件错误提示org.xml.sax.SAXParseException
今天整整一个上午都在和hibernate做斗争,早上一来,继续昨天的项目开发,发现spring项目不能启动,从错误中看是hibernate错误,多半是hibernate配置有错误,关键是错误提示中显示 ...
- Excel控制IE
---恢复内容开始--- 1.初始化and连接http网页 Set ie = CreateObject("InternetExplorer.Application") ie.Vis ...
- Asp.Net网站统一处理错误信息
1.创建Global.asax文件 2.在Application_Error里统一处理,可以写入文件,也可以写入SQL.代码如下 Exception ex = Server.GetLastError( ...
- [转]Homebrew 卸载时出现:Failed to locate Homebrew! 错误
今天在 MacBook 上安装 Homebrew,结果中间断了网,想重新卸载重装,结果一直卸载失败.问题现象如下: 问题现象 卸载时错误如下: ruby -e "$(curl -fsSL h ...
- VHDL学习笔记——数字系统设计
数字系统是指有若干数字电路和逻辑不见构成的能够处理或传输数字信息的设备.数字系统可分为三部分:输入输出接口.数据处理器和控制器. [传统的系统硬件设计]方法是(1)采用自底向上的设计方法(2)采用通用 ...
- java面试_数据库
1.group by 根据表里的字段名分类,相同字段名只显示一行记录,通常与聚集函数max.min合用选择最大值最小值,或者与having合用筛选,结果按照group by的字段排序 例:select ...
- ansible普通用户su切换问题
在现网应用中,安全加固后的主机是不允许直接以root用户登陆的,而很多命令又需要root用户来执行,在不改造现网的情况下.希望通过一个普通用户先登陆,再su切到root执行.而且每台主机的普通用户和r ...
- Hadoop切换namenode为active
hadoop切换namenode为active 进入hadoop/bin目录下 ./yarn rmadmin -transitionToActive --forcemanual rm1 重新启动zkf ...