奇异值分解。特征值分解是一个提取矩阵特征很不错的方法,但是它只是对方阵而言的,在现实的世界中,我们看到的大部分矩阵都不是方阵,比如说有N个学生,每个学生有M科成绩,这样形成的一个N * M的矩阵就不可能是方阵,我们怎样才能描述这样普通的矩阵呢的重要特征呢?奇异值分解可以用来干这个事情,奇异值分解是一个能适用于任意的矩阵的一种分解的方法

   
假设A是一个N * M的矩阵,那么得到的U是一个N * N的方阵(里面的向量是正交的,U里面的向量称为左奇异向量),Σ是一个N * M的矩阵(除了对角线的元素都是0,对角线上的元素称为奇异值),V’(V的转置)是一个N * N的矩阵,里面的向量也是正交的,V里面的向量称为右奇异向量),从图片来反映几个相乘的矩阵的大小可得下面的图片

那么奇异值和特征值是怎么对应起来的呢?首先,我们将一个矩阵A的转置 * A,将会得到一个方阵,我们用这个方阵求特征值可以得到:   
这里得到的v,就是我们上面的右奇异向量。此外我们还可以得到:

   
这里的σ就是上面说的奇异值,u就是上面说的左奇异向量。奇异值σ跟特征值类似,在矩阵Σ中也是从大到小排列,而且σ的减少特别的快,在很多情况下,前10%甚至1%的奇异值的和就占了全部的奇异值之和的99%以上了。也就是说,我们也可以用前r大的奇异值来近似描述矩阵,这里定义一下部分奇异值分解

r是一个远小于m、n的数,这样矩阵的乘法看起来像是下面的样子:

右边的三个矩阵相乘的结果将会是一个接近于A的矩阵,在这儿,r越接近于n,则相乘的结果越接近于A。而这三个矩阵的面积之和(在存储观点来说,矩阵面积越小,存储量就越小)要远远小于原始的矩阵A,我们如果想要压缩空间来表示原矩阵A,我们存下这里的三个矩阵:U、Σ、V就好了。

特征降维之SVD分解的更多相关文章

  1. 【机器学习】推荐系统、SVD分解降维

    推荐系统: 1.基于内容的实现:KNN等 2.基于协同滤波(CF)实现:SVD → pLSA(从LSA发展而来,由SVD实现).LDA.GDBT SVD算是比较老的方法,后期演进的主题模型主要是pLS ...

  2. 机器学习之SVD分解

    一.SVD奇异值分解的定义 假设是一个的矩阵,如果存在一个分解: 其中为的酉矩阵,为的半正定对角矩阵,为的共轭转置矩阵,且为的酉矩阵.这样的分解称为的奇异值分解,对角线上的元素称为奇异值,称为左奇异矩 ...

  3. 矩阵的SVD分解

    转自 http://blog.csdn.net/zhongkejingwang/article/details/43053513(实在受不了CSDN的广告) 在网上看到有很多文章介绍SVD的,讲的也都 ...

  4. 特征降维之PCA

    目录 PCA思想 问题形式化表述 PCA之协方差矩阵 协方差定义 矩阵-特征值 PCA运算步骤 PCA理论解释 最大方差理论 性质 参数k的选取 数据重建 主观理解 应用 代码示例 PCA思想 PCA ...

  5. SVD分解的理解[转载]

    http://www.bfcat.com/index.php/2012/03/svd-tutorial/ SVD分解(奇异值分解),本应是本科生就掌握的方法,然而却经常被忽视.实际上,SVD分解不但很 ...

  6. 机器学习中的矩阵方法04:SVD 分解

    前面我们讲了 QR 分解有一些优良的特性,但是 QR 分解仅仅是对矩阵的行进行操作(左乘一个酉矩阵),可以得到列空间.这一小节的 SVD 分解则是将行与列同等看待,既左乘酉矩阵,又右乘酉矩阵,可以得出 ...

  7. SVD分解技术数学解释

    SVD分解 SVD分解是LSA的数学基础,本文是我的LSA学习笔记的一部分,之所以单独拿出来,是因为SVD可以说是LSA的基础,要理解LSA必须了解SVD,因此将LSA笔记的SVD一节单独作为一篇文章 ...

  8. SVD分解技术详解

    版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gm ...

  9. 机器学习Python实现 SVD 分解

    这篇文章主要是结合机器学习实战将推荐算法和SVD进行对应的结合 不论什么一个矩阵都能够分解为SVD的形式 事实上SVD意义就是利用特征空间的转换进行数据的映射,后面将专门介绍SVD的基础概念.先给出p ...

随机推荐

  1. [原创]java WEB学习笔记08:HttpServletRequest & ServletRequest

    本博客为原创:综合 尚硅谷(http://www.atguigu.com)的系统教程(深表感谢)和 网络上的现有资源(博客,文档,图书等),资源的出处我会标明 本博客的目的:①总结自己的学习过程,相当 ...

  2. hbase shell-namespace(命名空间指令)

    hbase shell命名空间namespace篇: 1. alter_namespace (一般用于添加删除一个属性,很少使用) hbase(main)::> help 'alter_name ...

  3. Spring Cloud之Swagger集群搭建

    在微服务中,Swagger是每个服务 比如会员服务,订单服务,支付服务 进行继承. 如何将整个微服务中的Swagger进行合成,同一台服务器上. 使用Zuul+Swagger实现管理整个微服务API文 ...

  4. castle windsor学习-----XML Inline Parameters 内联参数

    当使用XML配置的时候,可能要给组件指定各种各样的依赖 1.简单的参数 参数名称不区分大小写 <component id="ping" type="Acme.Crm ...

  5. 算法(Algorithms)第4版 练习 2.3.17

    关键代码: public static void sort(Comparable[] a) { StdRandom.shuffle(a);//eliminate dependence on input ...

  6. springmvc接受表单多条数据的值

    点击下面链接查看具体内容: http://blog.csdn.net/lutinghuan/article/details/46820023

  7. 深入理解JVM - 晚期(运行期)优化

    在部分商用虚拟机中,Java程序最初是通过解释器(Interpreter)进行解释执行的,当虚拟机发现某个方法或者代码块的运行特别频繁时,就会把这些代码认定为“热点代码”(Hot Spot Code) ...

  8. Function Pointers in C

    来源:https://cs.nyu.edu/courses/spring12/CSCI-GA.3033-014/Assignment1/function_pointers.html Function ...

  9. JavaUtil_07_HttpUtil_使用Hutool 封装的 HttpUtil

    二.参考资料 1.[Hutool]Hutool工具类之Http工具——HttpUtil

  10. Javascript-- jQuery样式篇(二)

    jQuery的属性与样式 .attr()与.removeAttr() 每个元素都有一个或者多个特性,这些特性的用途就是给出相应元素或者其内容的附加信息.如:在img元素中,src就是元素的特性,用来标 ...