特征降维之SVD分解
奇异值分解。特征值分解是一个提取矩阵特征很不错的方法,但是它只是对方阵而言的,在现实的世界中,我们看到的大部分矩阵都不是方阵,比如说有N个学生,每个学生有M科成绩,这样形成的一个N * M的矩阵就不可能是方阵,我们怎样才能描述这样普通的矩阵呢的重要特征呢?奇异值分解可以用来干这个事情,奇异值分解是一个能适用于任意的矩阵的一种分解的方法:
假设A是一个N * M的矩阵,那么得到的U是一个N * N的方阵(里面的向量是正交的,U里面的向量称为左奇异向量),Σ是一个N * M的矩阵(除了对角线的元素都是0,对角线上的元素称为奇异值),V’(V的转置)是一个N * N的矩阵,里面的向量也是正交的,V里面的向量称为右奇异向量),从图片来反映几个相乘的矩阵的大小可得下面的图片
那么奇异值和特征值是怎么对应起来的呢?首先,我们将一个矩阵A的转置 * A,将会得到一个方阵,我们用这个方阵求特征值可以得到:
这里得到的v,就是我们上面的右奇异向量。此外我们还可以得到:
这里的σ就是上面说的奇异值,u就是上面说的左奇异向量。奇异值σ跟特征值类似,在矩阵Σ中也是从大到小排列,而且σ的减少特别的快,在很多情况下,前10%甚至1%的奇异值的和就占了全部的奇异值之和的99%以上了。也就是说,我们也可以用前r大的奇异值来近似描述矩阵,这里定义一下部分奇异值分解:
r是一个远小于m、n的数,这样矩阵的乘法看起来像是下面的样子:
右边的三个矩阵相乘的结果将会是一个接近于A的矩阵,在这儿,r越接近于n,则相乘的结果越接近于A。而这三个矩阵的面积之和(在存储观点来说,矩阵面积越小,存储量就越小)要远远小于原始的矩阵A,我们如果想要压缩空间来表示原矩阵A,我们存下这里的三个矩阵:U、Σ、V就好了。
特征降维之SVD分解的更多相关文章
- 【机器学习】推荐系统、SVD分解降维
推荐系统: 1.基于内容的实现:KNN等 2.基于协同滤波(CF)实现:SVD → pLSA(从LSA发展而来,由SVD实现).LDA.GDBT SVD算是比较老的方法,后期演进的主题模型主要是pLS ...
- 机器学习之SVD分解
一.SVD奇异值分解的定义 假设是一个的矩阵,如果存在一个分解: 其中为的酉矩阵,为的半正定对角矩阵,为的共轭转置矩阵,且为的酉矩阵.这样的分解称为的奇异值分解,对角线上的元素称为奇异值,称为左奇异矩 ...
- 矩阵的SVD分解
转自 http://blog.csdn.net/zhongkejingwang/article/details/43053513(实在受不了CSDN的广告) 在网上看到有很多文章介绍SVD的,讲的也都 ...
- 特征降维之PCA
目录 PCA思想 问题形式化表述 PCA之协方差矩阵 协方差定义 矩阵-特征值 PCA运算步骤 PCA理论解释 最大方差理论 性质 参数k的选取 数据重建 主观理解 应用 代码示例 PCA思想 PCA ...
- SVD分解的理解[转载]
http://www.bfcat.com/index.php/2012/03/svd-tutorial/ SVD分解(奇异值分解),本应是本科生就掌握的方法,然而却经常被忽视.实际上,SVD分解不但很 ...
- 机器学习中的矩阵方法04:SVD 分解
前面我们讲了 QR 分解有一些优良的特性,但是 QR 分解仅仅是对矩阵的行进行操作(左乘一个酉矩阵),可以得到列空间.这一小节的 SVD 分解则是将行与列同等看待,既左乘酉矩阵,又右乘酉矩阵,可以得出 ...
- SVD分解技术数学解释
SVD分解 SVD分解是LSA的数学基础,本文是我的LSA学习笔记的一部分,之所以单独拿出来,是因为SVD可以说是LSA的基础,要理解LSA必须了解SVD,因此将LSA笔记的SVD一节单独作为一篇文章 ...
- SVD分解技术详解
版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gm ...
- 机器学习Python实现 SVD 分解
这篇文章主要是结合机器学习实战将推荐算法和SVD进行对应的结合 不论什么一个矩阵都能够分解为SVD的形式 事实上SVD意义就是利用特征空间的转换进行数据的映射,后面将专门介绍SVD的基础概念.先给出p ...
随机推荐
- VS2013 Pro版本密钥
Visual Studio Professional 2013 KEY(密钥): XDM3T-W3T3V-MGJWK-8BFVD-GVPKY
- ARM汇编学习笔记
ARM RISC (Reduced Instruction Set Computers) X86 CISC (Complex Instruction Set Computers) ...
- 在Delphi2007下安装ReportMachine6.5
如何在Delphi2007下安装ReportMachine6.5: 一.在安装ReportMachine6.5之前要安装如下组件: (1).llPdfLib3.6,用于导出PDF文件: (2).Ehl ...
- Java -- 国际化 多语化
1. 以中英两种语言做示例,显示 "hello" 2. 建立英文语言文件 "mess_en_US.properties ", 输入内容 "hello= ...
- JAVA NIO之浅谈内存映射文件原理与DirectMemory
JAVA类库中的NIO包相对于IO 包来说有一个新功能是内存映射文件,日常编程中并不是经常用到,但是在处理大文件时是比较理想的提高效率的手段.本文我主要想结合操作系统中(OS)相关方面的知识介绍一下原 ...
- WCF之契约的分类(部分為參考他人)
什么是契约呢?在使用WCF时,对其制定各种各样的规则,就叫做WCF契约.任何一个分布式的应用程序在传递消息的时候都需要实现制定一个规则. 任何一个分布式应用程序,它之所以能够互相传递消息,都是事先制定 ...
- JavaScript中,让一个div在固定的父div中任意拖动
1.css代码 #big { border: 1px solid #FF3300; width: 300px; height: 300px; position: relative; } #small ...
- Python基础-常用模块OS
模块:一个python文件就是一个模块,模块分三种: 1,标准模块,也就是python自带的模块,例如import time,random,string等等 2,第三方模块,这种模块需要自己安装才能 ...
- 4 Python 日期和时间
Python 程序能用很多方式处理日期和时间,转换日期格式是一个常见的功能. Python 提供了一个 time 和 calendar 模块可以用于格式化日期和时间. 时间间隔是以秒为单位的浮点小数. ...
- django学习笔记(一)视图和url配置
1.开始一个项目: 进入创建的目录,然后: django-admin startproject myblog 2.启动开发服务器: python manage.py runserver 注:默认是80 ...