决策树算法原理及JAVA实现(ID3)
0 引言
决策树的目的在于构造一颗树像下面这样的树。
图1
图2
1. 如何构造呢?
1.1 参考资料。
写的东西非常经典。
1.2 数据集(训练数据集)
| outlook | temperature | humidity | windy | play |
| sunny | hot | high | FALSE | no |
| sunny | hot | high | TRUE | no |
| overcast | hot | high | FALSE | yes |
| rainy | mild | high | FALSE | yes |
| rainy | cool | normal | FALSE | yes |
| rainy | cool | normal | TRUE | no |
| overcast | cool | normal | TRUE | yes |
| sunny | mild | high | FALSE | no |
| sunny | cool | normal | FALSE | yes |
| rainy | mild | normal | FALSE | yes |
| sunny | mild | normal | TRUE | yes |
| overcast | mild | high | TRUE | yes |
| overcast | hot | normal | FALSE | yes |
| rainy | mild | high | TRUE | no |
1.3 构造原则—选信息增益最大的
对每项指标分别统计:在不同的取值下打球和不打球的次数。
table 2
| outlook | temperature | humidity | windy | play | |||||||||
| yes | no | yes | no | yes | no | yes | no | yes | no | ||||
| sunny | 2 | 3 | hot | 2 | 2 | high | 3 | 4 | FALSE | 6 | 2 | 9 | 5 |
| overcast | 4 | 0 | mild | 4 | 2 | normal | 6 | 1 | TRUR | 3 | 3 | ||
| rainy | 3 | 2 | cool | 3 | 1 | ||||||||
下面我们计算当已知变量outlook的值时,信息熵为多少。
outlook=sunny时,2/5的概率打球,3/5的概率不打球。entropy=0.971
outlook=overcast时,entropy=0
outlook=rainy时,entropy=0.971
而根据历史统计数据,outlook取值为sunny、overcast、rainy的概率分别是5/14、4/14、5/14,所以当已知变量outlook的值时,信息熵为:5/14 × 0.971 + 4/14 × 0 + 5/14 × 0.971 = 0.693
这样的话系统熵就从0.940下降到了0.693,信息增溢gain(outlook)为0.940-0.693=0.247
同样可以计算出gain(temperature)=0.029,gain(humidity)=0.152,gain(windy)=0.048。
gain(outlook)最大(即outlook在第一步使系统的信息熵下降得最快),所以决策树的根节点就取outlook。
1.4 为什么选信息增益最大的?
1.5 递归:
接下来要确定N1取temperature、humidity还是windy?在已知outlook=sunny的情况,根据历史数据,我们作出类似table 2的一张表,分别计算gain(temperature)、gain(humidity)和gain(windy),选最大者为N1。
依此类推,构造决策树。当系统的信息熵降为0时,就没有必要再往下构造决策树了,此时叶子节点都是纯的--这是理想情况。最坏的情况下,决策树的高度为属性(决策变量)的个数,叶子节点不纯(这意味着我们要以一定的概率来作出决策)。
1.6 递归结束的条件:
如果Examples都为反,那么返回label =- 的单结点树Root ,熵为0
如果Attributes为空,那么返回单结点树Root,label=Examples中最普遍的
2. 伪代码
3. java 实现
package sequence.machinelearning.decisiontree.myid3; import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import java.util.Map;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
import java.util.LinkedList; public class MyID3 { private static LinkedList<String> attribute = new LinkedList<String>(); // 存储属性的名称
private static LinkedList<ArrayList<String>> attributevalue = new LinkedList<ArrayList<String>>(); // 存储每个属性的取值
private static LinkedList<String[]> data = new LinkedList<String[]>();; // 原始数据 public static final String patternString = "@attribute(.*)[{](.*?)[}]";
public static String[] yesNo;
public static TreeNode root; /**
*
* @param lines 传入要分析的数据集
* @param index 哪个属性?attribute的index
*/
public Double getGain(LinkedList<String[]> lines,int index){
Double gain=-1.0;
List<Double> li=new ArrayList<Double>();
//统计Yes No的次数
for(int i=0;i<yesNo.length;i++){
Double sum=0.0;
for(int j=0;j<lines.size();j++){
String[] line=lines.get(j);
//data为结构化数据,如果数据最后一列==yes,sum+1
if(line[line.length-1].equals(yesNo[i])){
sum=sum+1;
}
}
li.add(sum);
}
//计算Entropy(S)计算Entropy(S) 见参考书《机器学习 》Tom.Mitchell著 第3.4.1.2节
Double entropyS=TheMath.getEntropy(lines.size(), li);
//下面计算gain List<String> la=attributevalue.get(index);
List<Point> lasv=new ArrayList<Point>();
for(int n=0;n<la.size();n++){
String attvalue=la.get(n);
//统计Yes No的次数
List<Double> lisub=new ArrayList<Double>();//如:sunny 是yes时发生的次数,是no发生的次数
Double Sv=0.0;//公式3.4中的Sv 见参考书《机器学习(Tom.Mitchell著)》
for(int i=0;i<yesNo.length;i++){
Double sum=0.0;
for(int j=0;j<lines.size();j++){
String[] line=lines.get(j);
//data为结构化数据,如果数据最后一列==yes,sum+1
if(line[index].equals(attvalue)&&line[line.length-1].equals(yesNo[i])){
sum=sum+1;
}
}
Sv=Sv+sum;//计算总数
lisub.add(sum);
}
//计算Entropy(S) 见参考书《机器学习(Tom.Mitchell著)》
Double entropySv=TheMath.getEntropy(Sv.intValue(), lisub);
//
Point p=new Point();
p.setSv(Sv);
p.setEntropySv(entropySv);
lasv.add(p);
}
gain=TheMath.getGain(entropyS,lines.size(),lasv);
return gain;
}
//寻找最大的信息增益,将最大的属性定为当前节点,并返回该属性所在list的位置和gain值
public Maxgain getMaxGain(LinkedList<String[]> lines){
if(lines==null||lines.size()<=0){
return null;
}
Maxgain maxgain = new Maxgain();
Double maxvalue=0.0;
int maxindex=-1;
for(int i=0;i<attribute.size();i++){
Double tmp=getGain(lines,i);
if(maxvalue< tmp){
maxvalue=tmp;
maxindex=i;
}
}
maxgain.setMaxgain(maxvalue);
maxgain.setMaxindex(maxindex);
return maxgain;
}
//剪取数组
public LinkedList<String[]> filterLines(LinkedList<String[]> lines, String attvalue, int index){
LinkedList<String[]> newlines=new LinkedList<String[]>();
for(int i=0;i<lines.size();i++){
String[] line=lines.get(i);
if(line[index].equals(attvalue)){
newlines.add(line);
}
} return newlines;
}
public void createDTree(){
root=new TreeNode();
Maxgain maxgain=getMaxGain(data);
if(maxgain==null){
System.out.println("没有数据集,请检查!");
}
int maxKey=maxgain.getMaxindex();
String nodename=attribute.get(maxKey);
root.setName(nodename);
root.setLiatts(attributevalue.get(maxKey));
insertNode(data,root,maxKey);
}
/**
*
* @param lines 传入的数据集,作为新的递归数据集
* @param node 深入此节点
* @param index 属性位置
*/
public void insertNode(LinkedList<String[]> lines,TreeNode node,int index){
List<String> liatts=node.getLiatts();
for(int i=0;i<liatts.size();i++){
String attname=liatts.get(i);
LinkedList<String[]> newlines=filterLines(lines,attname,index);
if(newlines.size()<=0){
System.out.println("出现异常,循环结束");
return;
}
Maxgain maxgain=getMaxGain(newlines);
double gain=maxgain.getMaxgain();
Integer maxKey=maxgain.getMaxindex();
//不等于0继续递归,等于0说明是叶子节点,结束递归。
if(gain!=0){
TreeNode subnode=new TreeNode();
subnode.setParent(node);
subnode.setFatherAttribute(attname);
String nodename=attribute.get(maxKey);
subnode.setName(nodename);
subnode.setLiatts(attributevalue.get(maxKey));
node.addChild(subnode);
//不等于0,继续递归
insertNode(newlines,subnode,maxKey);
}else{
TreeNode subnode=new TreeNode();
subnode.setParent(node);
subnode.setFatherAttribute(attname);
//叶子节点是yes还是no?取新行中最后一个必是其名称,因为只有完全是yes,或完全是no的情况下才会是叶子节点
String[] line=newlines.get(0);
String nodename=line[line.length-1];
subnode.setName(nodename);
node.addChild(subnode);
}
}
}
//输出决策树
public void printDTree(TreeNode node)
{
if(node.getChildren()==null){
System.out.println("--"+node.getName());
return;
}
System.out.println(node.getName());
List<TreeNode> childs = node.getChildren();
for (int i = 0; i < childs.size(); i++)
{
System.out.println(childs.get(i).getFatherAttribute());
printDTree(childs.get(i));
}
}
public static void main(String[] args) {
// TODO Auto-generated method stub
MyID3 myid3 = new MyID3();
myid3.readARFF(new File("datafile/decisiontree/test/in/weather.nominal.arff"));
myid3.createDTree();
myid3.printDTree(root);
}
//读取arff文件,给attribute、attributevalue、data赋值
public void readARFF(File file) {
try {
FileReader fr = new FileReader(file);
BufferedReader br = new BufferedReader(fr);
String line;
Pattern pattern = Pattern.compile(patternString);
while ((line = br.readLine()) != null) {
if (line.startsWith("@decision")) {
line = br.readLine();
if(line=="")
continue;
yesNo = line.split(",");
}
Matcher matcher = pattern.matcher(line);
if (matcher.find()) {
attribute.add(matcher.group(1).trim());
String[] values = matcher.group(2).split(",");
ArrayList<String> al = new ArrayList<String>(values.length);
for (String value : values) {
al.add(value.trim());
}
attributevalue.add(al);
} else if (line.startsWith("@data")) {
while ((line = br.readLine()) != null) {
if(line=="")
continue;
String[] row = line.split(",");
data.add(row);
}
} else {
continue;
}
}
br.close();
} catch (IOException e1) {
e1.printStackTrace();
}
}
}
版权声明:本文为博主原创文章,未经博主允许不得转载。
决策树算法原理及JAVA实现(ID3)的更多相关文章
- 机器学习相关知识整理系列之一:决策树算法原理及剪枝(ID3,C4.5,CART)
决策树是一种基本的分类与回归方法.分类决策树是一种描述对实例进行分类的树形结构,决策树由结点和有向边组成.结点由两种类型,内部结点表示一个特征或属性,叶结点表示一个类. 1. 基础知识 熵 在信息学和 ...
- 决策树算法原理(ID3,C4.5)
决策树算法原理(CART分类树) CART回归树 决策树的剪枝 决策树可以作为分类算法,也可以作为回归算法,同时特别适合集成学习比如随机森林. 1. 决策树ID3算法的信息论基础 1970年昆兰找 ...
- 决策树算法原理(CART分类树)
决策树算法原理(ID3,C4.5) CART回归树 决策树的剪枝 在决策树算法原理(ID3,C4.5)中,提到C4.5的不足,比如模型是用较为复杂的熵来度量,使用了相对较为复杂的多叉树,只能处理分类不 ...
- 决策树算法原理--good blog
转载于:http://www.cnblogs.com/pinard/p/6050306.html (楼主总结的很好,就拿来主义了,不顾以后还是多像楼主学习) 决策树算法在机器学习中算是很经典的一个算法 ...
- ID3决策树算法原理及C++实现(其中代码转自别人的博客)
分类是数据挖掘中十分重要的组成部分.分类作为一种无监督学习方式被广泛的使用. 之前关于"数据挖掘中十大经典算法"中,基于ID3核心思想的分类算法C4.5榜上有名.所以不难看出ID3 ...
- 决策树算法(1)含java源代码
信息熵:变量的不确定性越大,熵越大.熵可用下面的公式描述:-(p1*logp1+p2*logp2+...+pn*logpn)pi表示事件i发生的概率ID3:GAIN(A)=INFO(D)-INFO_A ...
- scikit-learn决策树算法类库使用小结
之前对决策树的算法原理做了总结,包括决策树算法原理(上)和决策树算法原理(下).今天就从实践的角度来介绍决策树算法,主要是讲解使用scikit-learn来跑决策树算法,结果的可视化以及一些参数调参的 ...
- 决策树算法——ID3
决策树算法是一种有监督的分类学习算法.利用经验数据建立最优分类树,再用分类树预测未知数据. 例子:利用学生上课与作业状态预测考试成绩. 上述例子包含两个可以观测的属性:上课是否认真,作业是否认真,并以 ...
- python机器学习笔记 ID3决策树算法实战
前面学习了决策树的算法原理,这里继续对代码进行深入学习,并掌握ID3的算法实践过程. ID3算法是一种贪心算法,用来构造决策树,ID3算法起源于概念学习系统(CLS),以信息熵的下降速度为选取测试属性 ...
随机推荐
- spring-cloud 实现更新配置不用重启服务 @FreshScope
继续前面搭建的spring cloud. 这里是基于rabbitMQ搭建的,首先需要在电脑上安装rabbitMQ. 在client端和server端分别加上如下依赖 compile group: 'o ...
- nodejs模块之event
event模块是nodejs系统中十分重要的一个模块,使用该模块我们可以实现事件的绑定的触发,为什么我们需要这个模块呢,因为nodejs是单线程异步的. 一.什么是单线程异步: 我们可以从JavaSc ...
- 【二叉堆】k路归并问题(BSOJ1941)
Description 有n个函数,分别为F1,F2,...,Fn.定义Fi(x)=Ai*x^2+Bi*x+Ci(x∈N*).给定这些Ai.Bi和Ci,请求出所有函数的所有函数值中最小的m个(如有重复 ...
- Android系统Recovery工作原理之使用update.zip升级过程分析(三)【转】
本文转载自:http://blog.csdn.net/mu0206mu/article/details/7464699 以下的篇幅开始分析我们在上两个篇幅中生成的update.zip包在具体更新中所经 ...
- python 常用的字符串方法
st = ' hello Kitty 'str = 'hello {name} {age}' #print(st.format(name='fadfa'))#常用的字符串方法print(st.coun ...
- dbgrid,datasoure,ClientDataSet的简单应用
dbgrid是用来在界面上显示数据的,需要连接源dbgrid1.datasource := datasource1; datasource:作为dbgrid,clientDataset的连接桥梁,需要 ...
- ACM,我回来了!
经过两天的时间,到了家一趟! 我终于又重新回到ACM实验室了!,有点头晕啊!!!
- codeforces 54A
题意:收到礼物的规则为每个假日必收到一份礼物,每K天里至少收到一份礼物,求出N天中收到的礼物的最小数量. 思路:将N天根据假日所在天数分为一段段,当假日与假日之间间隔天数hol[i]>-hol[ ...
- Spring Cloud之统一fallback接口
每个方法都配备一个fallback方法 不利于开发的 用类的方式 并且整个方法都是在同一个线程池里面的 主要对于client的修改: pom: <project xmlns="http ...
- Web container==Servlet container
Web container From Wikipedia, the free encyclopedia (Redirected from Servlet container) Web co ...