【BZOJ4542】[Hnoi2016]大数 莫队
【BZOJ4542】[Hnoi2016]大数
Description
小 B 有一个很大的数 S,长度达到了 N 位;这个数可以看成是一个串,它可能有前导 0,例如00009312345。小B还有一个素数P。现在,小 B 提出了 M 个询问,每个询问求 S 的一个子串中有多少子串是 P 的倍数(0 也是P 的倍数)。例如 S为0077时,其子串 007有6个子串:0,0,7,00,07,007;显然0077的子串007有6个子串都是素数7的倍数。
Input
第一行一个整数:P。第二行一个串:S。第三行一个整数:M。接下来M行,每行两个整数 fr,to,表示对S 的子串S[fr…to]的一次询问。注意:S的最左端的数字的位置序号为 1;例如S为213567,则S[1]为 2,S[1…3]为 213。N,M<=100000,P为素数
Output
输出M行,每行一个整数,第 i行是第 i个询问的答案。
Sample Input
121121
3
1 6
1 5
1 4
Sample Output
3
2
//第一个询问问的是整个串,满足条件的子串分别有:121121,2112,11,121,121。
题解:看到题容易想到用莫队。用sum[i]表示S的前i位组成的数%P的值,那么如果i...j能组成一个%P=0的数,意味着
$sum[j]-sum[i]*10^{j-i}=0(mod P) \rightarrow sum[j]*10^{-j}=sum[i]*10^{-i} (mod P)$
所以离散化一下,然后就变成了问一个区间中有多少对相同数,的用桶+莫队即可。
注意特判P=2,P=5的情况!因为上式不再成立!具体方法是直接判断哪些串的末尾的数能被2和5整除即可。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int maxn=100010;
int B,P,n,m,nm;
char str[maxn];
int v[maxn],s[maxn];
ll sum,ans[maxn];
ll s1[maxn],s2[maxn];
struct node
{
int val,org;
}p[maxn];
struct query
{
int l,r,org;
}q[maxn];
bool cmpp(node a,node b)
{
return a.val<b.val;
}
bool cmpq(query a,query b)
{
return (a.l/B==b.l/B)?(a.r<b.r):(a.l/B<b.l/B);
}
int main()
{
scanf("%d%s%d",&P,str,&m),n=strlen(str);
int i,l,r;
if(P==2||P==5)
{
for(i=1;i<=n;i++)
{
s1[i]=s1[i-1],s2[i]=s2[i-1];
if((str[i-1]-'0')%P==0) s1[i]+=i,s2[i]++;
}
for(i=1;i<=m;i++)
{
scanf("%d%d",&l,&r);
printf("%lld\n",s1[r]-s1[l-1]-(l-1)*(s2[r]-s2[l-1]));
}
return 0;
}
p[0].val=0;
for(i=1;i<=n;i++) p[i].val=(10ll*p[i-1].val+str[i-1]-'0')%P,p[i].org=i;
ll tmp=1;
for(i=n;i>=1;i--,tmp=tmp*10%P) p[i].val=tmp*p[i].val%P;
sort(p,p+n+1,cmpp);
for(i=0;i<=n;i++)
{
if(!i||p[i].val>p[i-1].val) nm++;
v[p[i].org]=nm;
}
B=int(sqrt(double(n)));
for(i=1;i<=m;i++) scanf("%d%d",&q[i].l,&q[i].r),q[i].l--,q[i].org=i;
sort(q+1,q+m+1,cmpq);
l=1,r=0;
for(i=1;i<=m;i++)
{
while(l>q[i].l) l--,sum+=s[v[l]],s[v[l]]++;
while(l<q[i].l) s[v[l]]--,sum-=s[v[l]],l++;
while(r<q[i].r) r++,sum+=s[v[r]],s[v[r]]++;
while(r>q[i].r) s[v[r]]--,sum-=s[v[r]],r--;
ans[q[i].org]=sum;
}
for(i=1;i<=m;i++) printf("%lld\n",ans[i]);
return 0;
}
【BZOJ4542】[Hnoi2016]大数 莫队的更多相关文章
- [BZOJ4542] [Hnoi2016] 大数 (莫队)
Description 小 B 有一个很大的数 S,长度达到了 N 位:这个数可以看成是一个串,它可能有前导 0,例如00009312345.小B还有一个素数P.现在,小 B 提出了 M 个询问,每个 ...
- bzoj4542 [Hnoi2016]大数 莫队+同余
题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4542 题解 我们令 \(f_i\) 表示从 \(i\) 到 \(n\) 位组成的数 \(\bm ...
- 【bzoj4542】[Hnoi2016]大数 莫队算法
题目描述 给出一个数字串,多次询问一段区间有多少个子区间对应的数为P的倍数.其中P为质数. 输入 第一行一个整数:P.第二行一个串:S.第三行一个整数:M.接下来M行,每行两个整数 fr,to,表示对 ...
- BZOJ.4542.[HNOI2016]大数(莫队)
题目链接 大数除法是很麻烦的,考虑能不能将其条件化简 一段区间[l,r]|p,即num[l,r]|p,类似前缀,记后缀suf[i]表示[i,n]的这段区间代表的数字 于是有 suf[l]-suf[r+ ...
- 洛谷P3245 [HNOI2016]大数(莫队)
题意 题目链接 Sol 莫队板子题.. 维护出每个位置开始的字符串\(mod P\)的结果,记为\(S_i\) 两个位置\(l, r\)满足条件当且仅当\(S_l - S_r = 0\),也就是\(S ...
- [BZOJ4542] [JZYZOJ2014][Hnoi2016] 大数(莫队+离散化)
正经题解在最下面 http://blog.csdn.net/qq_32739495/article/details/51286548 写的时候看了大神的题解[就是上面那个网址],看到下面这段话 观察题 ...
- bzoj 4542: [Hnoi2016]大数 (莫队)
Description 小 B 有一个很大的数 S,长度达到了 N 位:这个数可以看成是一个串,它可能有前导 0,例如00009312345.小B还有一个素数P.现在,小 B 提出了 M 个询问,每个 ...
- [HNOI2016]序列(莫队,RMQ)
[HNOI2016]序列(莫队,RMQ) 洛谷 bzoj 一眼看不出来怎么用数据结构维护 然后还没修改 所以考虑莫队 以$(l,r-1) -> (l,r)$为例 对答案的贡献是$\Sigma_ ...
- 【莫队】bzoj4542: [Hnoi2016]大数
挺有意思的,可以仔细体味一下的题:看白了就是莫队板子. Description 小 B 有一个很大的数 S,长度达到了 N 位:这个数可以看成是一个串,它可能有前导 0,例如00009312345.小 ...
随机推荐
- vi中使用“/”查找字符
在vi 文件中使用"/"查找字符串 命令模式下,输入 /word 后回车,即查找word,按 n 查找下一个匹配单词,按 N 查找上一个匹配单词.
- SparkMLlib分类算法之逻辑回归算法
SparkMLlib分类算法之逻辑回归算法 (一),逻辑回归算法的概念(参考网址:http://blog.csdn.net/sinat_33761963/article/details/5169383 ...
- Windows为什么双击打开‘我的电脑’, 没有了‘前进’‘ 后退’‘向上’等按钮?
如图所示 点击查看 工具栏 标准按钮即可 左侧的数值虚线可以拖动到任意,还可以添加按钮如搜索,删除,复制,剪切等
- 设置快速的debian源的方法:
1)设置临时源 vi /etc/apt/sources.list #添加以下一行到文件最后 deb http://http.us.debian.org/debian stable main 2)更新软 ...
- 微信小程序 - 如何通过button按钮实现分享(转发)功能
小程序官方API https://developers.weixin.qq.com/miniprogram/dev/framework/app-service/page.html#%E9%A1%B5% ...
- Linux(Centos)——下升级python3.3
CentOS下的Python版本一般都比较低,很多应用都需要升级python来完成.我装的centOS的默认的python版本是V2.4.3,但运行node.js需要的版本是2.5以上. 1.下载py ...
- Hbase笔记:批量导入
工作中可能会有对HBase的复杂操作,我们现在对HBase的操作太简单了.复杂操作一般用HBaseScan操作,还有用框架对HBase进行复杂操作,iparler,sharker.我们说HBase是数 ...
- java.math.BigDecimal保留两位小数,保留小数,精确位数
http://blog.csdn.net/yuhua3272004/article/details/3075436 使用java.math.BigDecimal工具类实现 java保留两位小数问题 ...
- 安装npm install时,长时间停留在某一处的解决方案
默认情况npm install安装时,会从 github.com 上下载文件,大部分安装不成功的原因都源自这里 因为 GitHub Releases 里的文件都托管在 s3.amazonaws.com ...
- ie8下面版本号(包含ie8)的浏览器不支持html5标签属性解决方式(Modernizr 2.6.2插件的使用)
我这边申明下:我写这篇日志主要是想然ie8可以支持html5的个别标签闭合,并不能让ie全然支持html5.我之前写的可能会误导非常多同学.希望大家能明确. 今天脑抽想用html5标签设计一个网页.我 ...