【RMQ】【Sparse_Table算法】
摘自网友,具体哪个忘记了,抱歉~
定义:
RMQ(Range Minimum/Maximum Query),即区间最值查询,是指这样一个问题:
对于长度为n的数列A,回答若干询问RMQ(A,i,j) (i,j<=n),返回数列A中下标在i,j之间的最小/大值。
此类问题的解决方法有很多,暴力(当然也就说说,基本没有出题的会让你暴过去)、线段树(复杂度为O(nlogn))、以及一个非常有名的在线处理RMQ问题的算法 -- Sparse_Table算法,简称ST算法,该算法能在进行O(nlogn)的预处理后达到查询O(1)的效率。主要思想为dp。
(一)预处理,DP
设A[i]是要求区间最值的数列,dp[i][j]表示从第i个数起连续2j个数中的最大值。
例如有A[10] = 3 2 4 5 6 8 1 2 9 7;
初值:
dp[1][0]表示第1个数起,长度为20=1的最大值,即元素3。同理 dp[1][1] = max(3,2) = 3, dp[1][2]=max(3,2,4,5) = 5,dp[1][3] = max(3,2,4,5,6,8,1,2) = 8;
并且我们可以容易的看出dp[i][0] = A[i]。
状态转移方程:
我们把dp[i][j]分成长度相同且为2j-1的两段,一段为dp[i][2j - 1], 一段为dp[i+2j - 1][2j - 1]。用上例说明,当i=1,j=3时就是3,2,4,5 和 6,8,1,2这两段。
dp[i,j]就是这两段各自最大值中的最大值。于是我们得到了状态转移方程:
dp[i][j] = max(dp[i][j-1], dp[i + 2(j-1)][j-1];
/*预处理->O(nlogn)*/
int dp[maxn][];
void initRMQ(int n)
{
for(int i = ; i <= n; i++) dp[i][] = A[i];
for(int j = ; j <= ; j++)
for(int i = ; i + ( << (j-)) <= n; i++)
dp[i][j] = max(dp[i][j-], dp[i+(<<(j-))][j-]);
}
注意代码中循环的顺序,外层是j,内层是i!!
(二)查询
若查询区间为A[i, j],那么我们需要找到覆盖这个闭区间(左边界取i,右边界取j)的最小幂(可重叠,比如查询A[5,9],我们可以查询A[5678]和A[6789])。
因为这个区间的长度len = j - i + 1,所以我们可以取k=log2(len),则有:RMQ(A, i, j) = max{ dp[i][k], dp[j-2k+1][k] }。
例如,查询区间[2,8]的最大值,k = log2(8 - 2 + 1) = 2,即求max( dp[2][2],dp[8 - 2 ^ 2 + 1][2]) = max(F[2, 2],F[5, 2]);
int Log2[maxn];
void init()
{
Log2[] = -; Log2[] = ;
int i, j;
for(i = , j = ; i < maxn; i++)
{
if(i > (<<(j+))) j++;
Log2[i] = j;
}
} int query(int L, int R)
{
if(L > R) swap(L, R);
if(L == R) return dp[L][];
int len = R-L+;
int k = Log2[len]; //此处用的是Log2[]数组保存每个数的log值,当然也可以用下面的式子求得;
//int k = (int)(log(R - L + 1.0) / log(2.0));
return max(dp[L][k], dp[R-(<<k)+][k]);
}
RMQ常常应用在字符串问题里.
【RMQ】【Sparse_Table算法】的更多相关文章
- poj 3264 区间最大最小值 RMQ问题之Sparse_Table算法
Balanced Lineup Time Limit: 5000 MS Memory Limit: 0 KB 64-bit integer IO format: %I64d , %I64u Java ...
- ST(RMQ)算法(在线)求LCA
在此之前,我写过另一篇博客,是倍增(在线)求LCA.有兴趣的同学可以去看一看.概念以及各种暴力就不在这里说了,那篇博客已经有介绍了. 不会ST算法的同学点这里 ST(RMQ)算法在线求LCA 这个算法 ...
- LCA最近公共祖先 ST+RMQ在线算法
对于一类题目,是一棵树或者森林,有多次查询,求2点间的距离,可以用LCA来解决. 这一类的问题有2中解决方法.第一种就是tarjan的离线算法,还有一中是基于ST算法的在线算法.复杂度都是O( ...
- 求解区间最值 - RMQ - ST 算法介绍
解析 ST 算法是 RMQ(Range Minimum/Maximum Query)中一个很经典的算法,它天生用来求得一个区间的最值,但却不能维护最值,也就是说,过程中不能改变区间中的某个元素的值.O ...
- [POJ3264]Balanced Lineup(RMQ, ST算法)
题目链接:http://poj.org/problem?id=3264 典型RMQ,这道题被我鞭尸了三遍也是醉了…这回用新学的st算法. st算法本身是一个区间dp,利用的性质就是相邻两个区间的最值的 ...
- 【原创】RMQ - ST算法详解
ST算法: ID数组下标: 1 2 3 4 5 6 7 8 9 ID数组元素: 5 7 3 1 4 8 2 9 8 1.ST算法作 ...
- HDU 3183 - A Magic Lamp - [RMQ][ST算法]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3183 Problem DescriptionKiki likes traveling. One day ...
- LCA上的RMQ模板算法
How far away ? Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)To ...
- POJ 3264 Balanced Lineup RMQ ST算法
题意:有n头牛,编号从1到n,每头牛的身高已知.现有q次询问,每次询问给出a,b两个数.要求给出编号在a与b之间牛身高的最大值与最小值之差. 思路:标准的RMQ问题. RMQ问题是求给定区间内的最值问 ...
随机推荐
- Day2-Python基础2---字符串操作
一.字符串操作 特性:不可修改 name = "my \tname is {name} and i am {year} old" #首字母大写.capitalize print(n ...
- Java-API-Package:javax.http.servlet
ylbtech-Java-API-Package:javax.http.servlet 1.返回顶部 1. Package javax.servlet.http This chapter descri ...
- Microsoft Sync Framework下的快速开发同步程序
Microsoft Sync Frameworks简称MSF,是一个综合的同步平台,MSF支持应用程序,服务,设备的在线以及离线同步.MSF主要有以下几个部件组成: * Sync Servic ...
- S2-045漏洞利用工具&解决方案
简单的重复造一个轮子,漏洞危害蛮大的 影响版本:Struts 2.3.5 - Struts 2.3.31,Struts 2.5 - Struts 2.5.10 仅供学习测试使用,严禁非法操作! 下载链 ...
- “百度杯”CTF比赛 九月场
Test: 题目提示查资料 打开地址,是一个海洋cms 海洋cms有个前台getshell的漏洞 在地址后加上/search.php?searchtype=5&tid=&area=ev ...
- Oracle、SqlServer——基础知识——oracle 与 SqlServer 的区别(未完工)
一. oracle 与 SqlServer 的区别: 类别 oracle SqlServer 连接字符串 || + 变量 变量名 @变量名 初始赋值 := = SQL语句赋值 into = 绑定变量 ...
- elasticsearch的功能及适用场景(2)
1.Elasticsearch的功能 (1)分布式的搜索引擎和数据分析引擎 搜索:百度,网站的站内搜索,IT系统的检索数据分析:电商网站,最近7天牙膏这种商品销量排名前10的商家有哪些:新闻网站,最近 ...
- TCP/IP 笔记 1.3 IP:网际协议
---恢复内容开始--- I P是T C P / I P协议族中最为核心的协议.所有的 T C P.U D P.I C M P及I G M P数据都以I P数据报格式传输. 不可靠( u n r e ...
- Python 面向对象 (进阶篇)
<Python 面向对象(初级篇)>文章介绍了面向对象基本知识: 面向对象是一种编程方式,此编程方式的实现是基于对 类 和 对象 的使用 类 是一个模板,模板中包装了多个“函数”供使用(可 ...
- css知多少(5)——选择器(转)
css知多少(5)——选择器 1. 引言 从本节开始,就进入本系列的第二个部分——css和html的结合——说白了就是选择器. CSS中定义了样式,如何将这些样式设置到相应的html节点上?就不得 ...