题目描述

你有一组非零数字(不一定唯一),你可以在其中插入任意个0,这样就可以产生无限个数。比如说给定{1,2},那么可以生成数字12,21,102,120,201,210,1002,1020,等等。

现在给定一个数,问在这个数之前有多少个数。(注意这个数不会有前导0).

输入输出格式

输入格式:

只有1行,为1个整数n.

输出格式:

只有整数,表示N之前出现的数的个数。

输入输出样例

输入样例#1: 复制

1020
输出样例#1: 复制

7

说明

n的长度不超过50,答案不超过2^63-1.

题解

  挺裸的数位dp(虽然我并不会)

  懒得写了,直接贴一下->这里

 //minamoto
#include<iostream>
#include<cstdio>
#define ll long long
using namespace std;
const int N=;
int a[N],v[N],n;ll c[N][N],ans;
ll gc(int n,int m){
if(c[n][m]) return c[n][m];
if(m==) return n;
if(m==||m==n) return ;
if(m>n) return ;
c[n][m]=gc(n-,m)+gc(n-,m-);
return c[n][m];
}
ll calc(){
ll res=;
int m=n;
for(int i=;i<;++i) if(a[i]) res*=gc(m,a[i]),m-=a[i];
return res;
}
int main(){
//freopen("testdata.in","r",stdin);
char ch;
while(cin>>ch)if(isdigit(ch))v[++n]=ch-,a[v[n]]++;
int nn=n;
for(int i=;i<=nn;++i){
--n;
for(int j=;j<v[i];++j)
if(a[j]){--a[j],ans+=calc(),++a[j];}
--a[v[i]];
}
printf("%lld\n",ans);
return ;
}

洛谷P2518 [HAOI2010]计数的更多相关文章

  1. 洛谷 P2518 [HAOI2010]计数 (组合数)

    题面 luogu 题解 本来想练数位dp的,结果又忍不住写了组合数.. 去掉一个\(0\)可以看作把\(0\)移到前面去 那么题目转化为 \(n\)有多少个排列小于\(n\) 强制某一位比\(n\)的 ...

  2. 洛谷P1144-最短路计数-最短路变形

    洛谷P1144-最短路计数 题目描述: 给出一个\(N\)个顶点\(M\)条边的无向无权图,顶点编号为\(1-N\).问从顶点\(1\)开始,到其他每个点的最短路有几条. 思路: \(Dijkstra ...

  3. 洛谷P2516 [HAOI2010]最长公共子序列(LCS,最短路)

    洛谷题目传送门 一进来就看到一个多月前秒了此题的ysn和YCB%%% 最长公共子序列的\(O(n^2)\)的求解,Dalao们想必都很熟悉了吧!不过蒟蒻突然发现,用网格图貌似可以很轻松地理解这个东东? ...

  4. 洛谷$P$2518 计数 $[HAOI2010]$ 数位$dp$

    正解:数位$dp$ 解题报告: 传送门$w$ 感觉省选的数位$dp$还是比较有质量的辣,,,至少有一定的思维难度是趴$QwQ$ 这题要考虑到一个,我认为比较关键的点,就,对于一个位数不满的数,可以理解 ...

  5. 洛谷 P2515 [HAOI2010]软件安装 解题报告

    P2515 [HAOI2010]软件安装 题目描述 现在我们的手头有\(N\)个软件,对于一个软件\(i\),它要占用\(W_i\)的磁盘空间,它的价值为\(V_i\).我们希望从中选择一些软件安装到 ...

  6. 洛谷——P3914 染色计数

    P3914 染色计数 题目描述 有一颗NN个节点的树,节点用1,2,\cdots,N1,2,⋯,N编号.你要给它染色,使得相邻节点的颜色不同.有MM种颜色,用1,2,\cdots,M1,2,⋯,M编号 ...

  7. 洛谷——P1176 路径计数2

    P1176 路径计数2 题目描述 一个N \times NN×N的网格,你一开始在(1,1)(1,1),即左上角.每次只能移动到下方相邻的格子或者右方相邻的格子,问到达(N,N)(N,N),即右下角有 ...

  8. 洛谷 P3914 染色计数

    P3914 染色计数 题目描述 有一颗NN个节点的树,节点用1,2,\cdots,N1,2,⋯,N编号.你要给它染色,使得相邻节点的颜色不同.有MM种颜色,用1,2,\cdots,M1,2,⋯,M编号 ...

  9. 洛谷 P1176 路径计数2

    P1176 路径计数2 题目描述 一个N×N的网格,你一开始在(1, 1),即左上角.每次只能移动到下方相邻的格子或者右方相邻的格子,问到达(N, N),即右下角有多少种方法. 但是这个问题太简单了, ...

随机推荐

  1. Oracle RMAN 学习:恢复

    Oracle RMAN 学习:恢复 6 rman恢复 Rman中的恢复对应restore,recover Restore,数据修复,利用备份集的数据文件来替换已损坏的数据文件或将其恢复到另外一个位置, ...

  2. eclipse下搭建Drools规则引擎环境

    插件下载地址:http://download.jboss.org/drools/release/ 1.点开对应的版本文件,选择标红的两个压缩包下载,其他的如有需要也可以自行选择: 2.将下载的压缩包解 ...

  3. Debian 7开启ssh、telnet

    SSH 1. 安装ssh服务 apt-get install openssh-server 2. 开启ssh /etc/init.d/ssh  start Telnet 1. 安装telnet apt ...

  4. Oracle 11g oracle 用户密码过期问题 (ZT)

    http://www.blogjava.net/freeman1984/archive/2013/04/23/398301.html Oracle 11g 之前默认的用户时是没有密码过期的限制的,在O ...

  5. javascript——对象的概念——函数 3 (使用技巧)

    1.回调函数:将函数A传给函数B,由函数B来执行A,则称A为回调函数. 例1: 例2 function addone(a){;}; //定义一个回调函数 function mulitiply(a,b, ...

  6. NSOperation/NSOperationQueue详细使用介绍

      一.简介 (1)是使用GCD实现的一套Objective-C的API (2)是面向对象的线程技术 (3)提供了一些在GCD中不容易实现的特性,如:限制最大并发数量.操作之间的依赖关系   NSOp ...

  7. Bytes和bits的区别(字节和位的区别)

    基本概念 Bit意为“位”或“比特”,是计算机运算的基础,属于二进制的范畴: Byte意为“字节”,是计算机文件大小的基本计算单位: 这两者应用的场合不同.通常用bit来作数据传输的单位,因为物理层, ...

  8. 列表控件JList的使用

    --------------siwuxie095                             工程名:TestUI 包名:com.siwuxie095.ui 类名:TestList.jav ...

  9. C#简单的图片合成及防止并发的办法

    /// <summary> /// 合成图 /// </summary> private string ComposeCarBrandBadImage(AnonAttachme ...

  10. Java 访问 Kylin 总结

    这次开发功能是OEM统计报表.统计报表的数据由大数据平台部的同事收集,数据的展示由我们部门开发. 大数据那边使用 Kylin 分布式分析引擎(kylin官方文档). Kylin 虽比较偏向大数据相关, ...