题目描述

你有一组非零数字(不一定唯一),你可以在其中插入任意个0,这样就可以产生无限个数。比如说给定{1,2},那么可以生成数字12,21,102,120,201,210,1002,1020,等等。

现在给定一个数,问在这个数之前有多少个数。(注意这个数不会有前导0).

输入输出格式

输入格式:

只有1行,为1个整数n.

输出格式:

只有整数,表示N之前出现的数的个数。

输入输出样例

输入样例#1: 复制

1020
输出样例#1: 复制

7

说明

n的长度不超过50,答案不超过2^63-1.

题解

  挺裸的数位dp(虽然我并不会)

  懒得写了,直接贴一下->这里

 //minamoto
#include<iostream>
#include<cstdio>
#define ll long long
using namespace std;
const int N=;
int a[N],v[N],n;ll c[N][N],ans;
ll gc(int n,int m){
if(c[n][m]) return c[n][m];
if(m==) return n;
if(m==||m==n) return ;
if(m>n) return ;
c[n][m]=gc(n-,m)+gc(n-,m-);
return c[n][m];
}
ll calc(){
ll res=;
int m=n;
for(int i=;i<;++i) if(a[i]) res*=gc(m,a[i]),m-=a[i];
return res;
}
int main(){
//freopen("testdata.in","r",stdin);
char ch;
while(cin>>ch)if(isdigit(ch))v[++n]=ch-,a[v[n]]++;
int nn=n;
for(int i=;i<=nn;++i){
--n;
for(int j=;j<v[i];++j)
if(a[j]){--a[j],ans+=calc(),++a[j];}
--a[v[i]];
}
printf("%lld\n",ans);
return ;
}

洛谷P2518 [HAOI2010]计数的更多相关文章

  1. 洛谷 P2518 [HAOI2010]计数 (组合数)

    题面 luogu 题解 本来想练数位dp的,结果又忍不住写了组合数.. 去掉一个\(0\)可以看作把\(0\)移到前面去 那么题目转化为 \(n\)有多少个排列小于\(n\) 强制某一位比\(n\)的 ...

  2. 洛谷P1144-最短路计数-最短路变形

    洛谷P1144-最短路计数 题目描述: 给出一个\(N\)个顶点\(M\)条边的无向无权图,顶点编号为\(1-N\).问从顶点\(1\)开始,到其他每个点的最短路有几条. 思路: \(Dijkstra ...

  3. 洛谷P2516 [HAOI2010]最长公共子序列(LCS,最短路)

    洛谷题目传送门 一进来就看到一个多月前秒了此题的ysn和YCB%%% 最长公共子序列的\(O(n^2)\)的求解,Dalao们想必都很熟悉了吧!不过蒟蒻突然发现,用网格图貌似可以很轻松地理解这个东东? ...

  4. 洛谷$P$2518 计数 $[HAOI2010]$ 数位$dp$

    正解:数位$dp$ 解题报告: 传送门$w$ 感觉省选的数位$dp$还是比较有质量的辣,,,至少有一定的思维难度是趴$QwQ$ 这题要考虑到一个,我认为比较关键的点,就,对于一个位数不满的数,可以理解 ...

  5. 洛谷 P2515 [HAOI2010]软件安装 解题报告

    P2515 [HAOI2010]软件安装 题目描述 现在我们的手头有\(N\)个软件,对于一个软件\(i\),它要占用\(W_i\)的磁盘空间,它的价值为\(V_i\).我们希望从中选择一些软件安装到 ...

  6. 洛谷——P3914 染色计数

    P3914 染色计数 题目描述 有一颗NN个节点的树,节点用1,2,\cdots,N1,2,⋯,N编号.你要给它染色,使得相邻节点的颜色不同.有MM种颜色,用1,2,\cdots,M1,2,⋯,M编号 ...

  7. 洛谷——P1176 路径计数2

    P1176 路径计数2 题目描述 一个N \times NN×N的网格,你一开始在(1,1)(1,1),即左上角.每次只能移动到下方相邻的格子或者右方相邻的格子,问到达(N,N)(N,N),即右下角有 ...

  8. 洛谷 P3914 染色计数

    P3914 染色计数 题目描述 有一颗NN个节点的树,节点用1,2,\cdots,N1,2,⋯,N编号.你要给它染色,使得相邻节点的颜色不同.有MM种颜色,用1,2,\cdots,M1,2,⋯,M编号 ...

  9. 洛谷 P1176 路径计数2

    P1176 路径计数2 题目描述 一个N×N的网格,你一开始在(1, 1),即左上角.每次只能移动到下方相邻的格子或者右方相邻的格子,问到达(N, N),即右下角有多少种方法. 但是这个问题太简单了, ...

随机推荐

  1. Day2-VIM(五):复制

    粘帖 p 粘帖 复制的形式可以很多,但是粘帖的形式却没多少 无非就是加数字达到多次粘帖什么的 其实准确的说,p应该是放置的意思 不过我也搞不清是paste还是put的缩写 单词和字符复制 ynl 向右 ...

  2. [置顶] 制作开机LOGO就是这么简单!

    转自: http://mp.weixin.qq.com/s?__biz=MzAxNTAyOTczMw==&mid=2649328522&idx=1&sn=64107695fef ...

  3. Rails:rails链接多个数据库【转】

    之前查到Rails应用中连接多个数据库的方式如下: class Cookie < ActiveRecord::Base establish_connection :typo ... end 这样 ...

  4. 【转】ruby中nil?, empty? and blank?的选择

    In Ruby, you check with nil? if an object is nil:article = nil article.nil? # => true empty? chec ...

  5. python web框架 Django基本操作

    django 操作总结! django框架安装: cmd安装: pip3 install django pycharm安装: 在python变量下 搜索 django 安装 创建django项目: c ...

  6. 语法错误: 标识符“acosf”

    1>e:\vs2010\vc\include\cmath(19): error C2061: 语法错误: 标识符“acosf” 1>e:\vs2010\vc\include\cmath(1 ...

  7. 问题:C#控制台 停留;结果:c#控制台如何延时显示

    Thread.Sleep(毫秒数);//比如Thread.Sleep(2000)即为延时2秒需using System.Threading; 随笔5 - C#控制台窗口的显示与隐藏 1. 定义一个Co ...

  8. appium如何连接模拟器代码实例

    from appium import webdriver def connect(self): self.desired_caps = {} self.desired_caps['platformNa ...

  9. LaTeX 控制图片的位置

    加感叹号来忽略“美学”标准. \begin{figure}[!htb] \usepackage{float}\begin{figure}[H]插到你代码相应的位置. 1,插入并列的子图 \usepac ...

  10. 第三天:Servlet运行原理

    1.  如何不重启tomcat就可以重新加载一个web应用?? 方法:进入tomcat的manager之后点击reload即可. 2.开发一个Servlet,该Servlet可以输出自己的名字并显示当 ...