#6077. 「2017 山东一轮集训 Day7」逆序对

 

题目描述

给定 n,k n, kn,k,请求出长度为 n nn 的逆序对数恰好为 k kk 的排列的个数。答案对 109+7 10 ^ 9 + 710​9​​+7 取模。

对于一个长度为 n nn 的排列 p pp,其逆序对数即满足 i<j i < ji<j 且 pi>pj p_i > p_jp​i​​>p​j​​ 的二元组 (i,j) (i, j)(i,j) 的数量。

输入格式

一行两个整数 n,k n, kn,k。

输出格式

一行,表示答案。

样例

样例输入

7 12

样例输出

531

数据范围与提示

对于 20% 20\%20% 的数据,n,k≤20 n, k \leq 20n,k≤20;
对于 40% 40\%40% 的数据,n,k≤100 n, k \leq 100n,k≤100;
对于 60% 60\%60% 的数据,n,k≤5000 n, k \leq 5000n,k≤5000;
对于 100% 100\%100% 的数据,1≤n,k≤100000,1≤k≤(n2) 1 \leq n, k \leq 100000, 1 \leq k \leq \binom{n}{2}1≤n,k≤100000,1≤k≤(​2​n​​)。

#include<iostream>
#include<cstdio>
#include<cstring>
#define mod 1000000007
#define maxn 5002
using namespace std;
int dp[maxn][maxn],n,sum[maxn][maxn],m;
int Max(int x,int y){return x>y?x:y;}
int Min(int x,int y){return x<y?x:y;}
int main(){
scanf("%d%d",&n,&m);m++;
dp[][]=;
sum[][]=;
int lim,i,j,l,r;
for(i=;i<=n;++i){
lim=(i-)*i/+;
for(j=;j<=min(lim,m);++j){
l=Max(j-i,);r=Min(j,(i-)*(i-)/+);
dp[i][j]=sum[i-][r]-sum[i-][l];
if(dp[i][j]<)dp[i][j]+=mod;
else if(dp[i][j]>=mod)dp[i][j]-=mod;
sum[i][j]=sum[i][j-]+dp[i][j];
if(sum[i][j]>=mod)sum[i][j]-=mod;
}
}
printf("%d",dp[n][m]);
return ;
}

60分 dp+前缀和优化

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#define maxn 200010
#define mod 1000000007
using namespace std;
int n,k,S;
long long f[][maxn],inv[maxn],fac[maxn],a[maxn];
long long C(int n,int m){
return fac[n]*inv[m]%mod*inv[n-m]%mod;
}
long long Pow(long long x,int y){
long long res=;
while(y){
if(y&)res=res*x%mod;
x=x*x%mod;
y>>=;
}
return res;
}
int main(){
scanf("%d%d",&n,&k);
S=sqrt(k<<)+;
f[][]=;
for(int i=;i<=S;i++)
for(int j=i;j<=k;j++){
f[i][j]=(f[i][j-i]+f[i-][j-i])%mod;
if(j>n)f[i][j]=(f[i][j]-f[i-][j-n-])%mod;
}
fac[]=inv[]=;
for(int i=;i<=k+n;i++){
fac[i]=1LL*fac[i-]*i%mod;
inv[i]=Pow(fac[i],mod-);
}
long long ans=C(n+k-,n-);
for(int i=;i<=S && i<=n;i++){
long long cur=;
for(int j=;j<=k;j++)
cur=(cur+f[i][j]*C(n+k-j-,n-))%mod;
if(i&)cur=-cur;
ans=(ans+cur)%mod;
}
ans=(ans+mod)%mod;
cout<<ans;
}

100分

loj #6077. 「2017 山东一轮集训 Day7」逆序对的更多相关文章

  1. 【LOJ6077】「2017 山东一轮集训 Day7」逆序对 生成函数+组合数+DP

    [LOJ6077]「2017 山东一轮集训 Day7」逆序对 题目描述 给定 n,k ,请求出长度为 n的逆序对数恰好为 k 的排列的个数.答案对 109+7 取模. 对于一个长度为 n 的排列 p ...

  2. LOJ6077「2017 山东一轮集训 Day7」逆序对 (生成函数+多项式exp?朴素DP!)

    题面 给定 n , k n,k n,k ,求长度为 n n n 逆序对个数为 k k k 的排列个数,对 1 e 9 + 7 \rm1e9+7 1e9+7 取模. 1 ≤ n , k ≤ 100   ...

  3. loj6077. 「2017 山东一轮集训 Day7」逆序对

    题目描述: loj 题解: 容斥+生成函数. 考虑加入的第$i$个元素对结果的贡献是$[0,i-1]$,我们可以列出生成函数. 长这样:$(1)*(1+x)*(1+x+x^2)*--*(1+x+x^2 ...

  4. 「2017 山东一轮集训 Day7」逆序对

    题解: 满满的套路题.. 首先显然从大到小枚举 然后每次生成的逆序对是1----(i-1)的 这样做dp是nk的 复杂度太高了 那我们转化一下问题 变成sigma(ai   (ai<i)  )= ...

  5. 题解 「2017 山东一轮集训 Day7」逆序对

    题目传送门 Description 给定 $ n, k $,请求出长度为 $ n $ 的逆序对数恰好为 $ k $ 的排列的个数.答案对 $ 10 ^ 9 + 7 $ 取模. 对于一个长度为 $ n ...

  6. LOJ #6119. 「2017 山东二轮集训 Day7」国王

    Description 在某个神奇的大陆上,有一个国家,这片大陆的所有城市间的道路网可以看做是一棵树,每个城市要么是工业城市,要么是农业城市,这个国家的人认为一条路径是 exciting 的,当且仅当 ...

  7. loj #6079. 「2017 山东一轮集训 Day7」养猫【最大费用最大流】

    首先假设全睡觉,然后用费用流考虑平衡要求建立网络流 把1~n的点看作是i-k+1~k这一段的和,连接(i,i+k,1,e[i]-s[i]),表示把i改成吃饭,能对i~i+k-1这一段的点产生影响:然后 ...

  8. Loj #6069. 「2017 山东一轮集训 Day4」塔

    Loj #6069. 「2017 山东一轮集训 Day4」塔 题目描述 现在有一条 $ [1, l] $ 的数轴,要在上面造 $ n $ 座塔,每座塔的坐标要两两不同,且为整点. 塔有编号,且每座塔都 ...

  9. Loj #6073.「2017 山东一轮集训 Day5」距离

    Loj #6073.「2017 山东一轮集训 Day5」距离 Description 给定一棵 \(n\) 个点的边带权的树,以及一个排列$ p\(,有\)q $个询问,给定点 \(u, v, k\) ...

随机推荐

  1. Python中try...except...else的用法

    Python中try...except...else的用法: try:    <语句>except <name>:    <语句>          #如果在try ...

  2. JeeSite入门介绍(一)

    JeeSite特点:高效.高性能.强安全性属于开源.JavaEE快速开发平台:接私活的最佳助手: JeeSite是在Spring Framework基础上搭建的一个Java基础开发平台,以Spring ...

  3. 问题:oracle 两个表之间的修改;结果:ORACLE 两个表之间更新的实现

    前提条件: 表info_user中有字段id和name,字段id为索引 表data_user_info中有字段id和name,字段id为索引 其中表info_user中字段id和表data_user_ ...

  4. MySQL学习笔记之一---字符编码和字符集

    前言: 一般来说,出现中文乱码,都是客户端和服务端字符集不匹配导致的原因. (默认未指定字符集创建的数据库表,都是latinl字符集, 强烈建议使用utf8字符集)   保证不出现乱码的思想:保证客户 ...

  5. NSOperation/NSOperationQueue详细使用介绍

      一.简介 (1)是使用GCD实现的一套Objective-C的API (2)是面向对象的线程技术 (3)提供了一些在GCD中不容易实现的特性,如:限制最大并发数量.操作之间的依赖关系   NSOp ...

  6. NDK 编译报错:request for member 'FindClass' in something not a structure or union

    ndk编译 xx.c文件时一直报下面的错误: ”request for member 'FindClass' in something not a structure or union ...” 原因 ...

  7. 转载-你应该知道的 RPC 原理

    在校期间大家都写过不少程序,比如写个hello world服务类,然后本地调用下,如下所示.这些程序的特点是服务消费方和服务提供方是本地调用关系. 而一旦踏入公司尤其是大型互联网公司就会发现,公司的系 ...

  8. LaTeX数学公式基础

    LaTeX数学公式 参考:https://www.cnblogs.com/Sinte-Beuve/p/6160905.html 原博客显示有点问题,重新搬运整理LaTeX数学公式部分的基本用法 基础 ...

  9. 2018多校第九场1004(HDU 6415) DP

    本以为是个找规律的题一直没找出来... 题目:给你一个n*m的矩阵和1-n*m个数,问有多少种情况满足纳什均衡的点只有一个.纳什均衡点是指这个元素在所在行和所在列都是最大的. 思路:吉老师直播的思路: ...

  10. vue插件开发与发布

    vue插件的规范 / plug.js Toast={}Toast.install=function(){ Vue.prototype.$toast=function(){ }} // 导出这个对象 e ...