主要功能:

Blob 是Caffe作为传输数据的媒介,不管是网络权重參数,还是输入数据,都是转化为Blob数据结构来存储,网络,求解器等都是直接与此结构打交道的。

其直观的能够把它看成一个有4纬的结构体(包括数据和梯度)。而实际上,它们仅仅是一维的指针而已,其4维结构通过shape属性得以计算出来(依据C语言的数据顺序)。

其成员变量有:

 protected:
shared_ptr<SyncedMemory> data_;// 存放数据
shared_ptr<SyncedMemory> diff_;//存放梯度
vector<int> shape_; //存放形状
int count_; //数据个数
int capacity_; //数据容量

成员函数,见的最多的有:

  const Dtype* cpu_data() const; //cpu使用的数据
void set_cpu_data(Dtype* data);//用数据块的值来blob里面的data。
const Dtype* gpu_data() const;//返回不可更改的指针。下同
const Dtype* cpu_diff() const;
const Dtype* gpu_diff() const;
Dtype* mutable_cpu_data();//返回可更改的指针,下同
Dtype* mutable_gpu_data();
Dtype* mutable_cpu_diff();
Dtype* mutable_gpu_diff();

总之,带mutable_开头的意味着能够对返回的指针内容进行更改,而不带mutable_开头的返回const 指针。不能对其指针的内容进行改动,

int offset(const int n, const int c = 0, const int h = 0,const int w = 0) const
// 通过n,c,h,w 4个參数来计算一维向量的偏移量。 Dtype data_at(const int n, const int c, const int h,const int w) const//通过n,c,h,w 4个參数来来获取该向量位置上的值。 Dtype diff_at(const int n, const int c, const int h,const int w) const//同上 inline const shared_ptr<SyncedMemory>& data() const {
CHECK(data_);
return data_;//返回数据,不能改动
} inline const shared_ptr<SyncedMemory>& diff() const {
CHECK(diff_);
return diff_;//返回梯度。不能改动
} Reshape(...)//reshape 有多种多态的实现,能够是四个数字。长度为四的vector。其他blob等。 if (count_ > capacity_) {
capacity_ = count_;
data_.reset(new SyncedMemory(capacity_ * sizeof(Dtype)));
diff_.reset(new SyncedMemory(capacity_ * sizeof(Dtype)));
}//当空间不够的时候,须要扩大容量,reset。

源码:

#ifndef CAFFE_BLOB_HPP_
#define CAFFE_BLOB_HPP_ #include <algorithm>
#include <string>
#include <vector> #include "caffe/common.hpp"
#include "caffe/proto/caffe.pb.h"
#include "caffe/syncedmem.hpp"
#include "caffe/util/math_functions.hpp" const int kMaxBlobAxes = INT_MAX; namespace caffe { /**
* @brief A wrapper around SyncedMemory holders serving as the basic
* computational unit through which Layer%s, Net%s, and Solver%s
* interact.
*
* TODO(dox): more thorough description.
*/
template <typename Dtype>
class Blob {
public:
Blob()
: data_(), diff_(), count_(0), capacity_(0) {} /// @brief Deprecated; use <code>Blob(const vector<int>& shape)</code>.
explicit Blob(const int num, const int channels, const int height,
const int width);
explicit Blob(const vector<int>& shape); /// @brief Deprecated; use <code>Reshape(const vector<int>& shape)</code>.
void Reshape(const int num, const int channels, const int height,
const int width);
/**
* @brief Change the dimensions of the blob, allocating new memory if
* necessary.
*
* This function can be called both to create an initial allocation
* of memory, and to adjust the dimensions of a top blob during Layer::Reshape
* or Layer::Forward. When changing the size of blob, memory will only be
* reallocated if sufficient memory does not already exist, and excess memory
* will never be freed.
*
* Note that reshaping an input blob and immediately calling Net::Backward is
* an error; either Net::Forward or Net::Reshape need to be called to
* propagate the new input shape to higher layers.
*/
void Reshape(const vector<int>& shape);
void Reshape(const BlobShape& shape);
void ReshapeLike(const Blob& other);
inline string shape_string() const {
ostringstream stream;
for (int i = 0; i < shape_.size(); ++i) {
stream << shape_[i] << " ";
}
stream << "(" << count_ << ")";
return stream.str();
}
inline const vector<int>& shape() const { return shape_; }
/**
* @brief Returns the dimension of the index-th axis (or the negative index-th
* axis from the end, if index is negative).
*
* @param index the axis index, which may be negative as it will be
* "canonicalized" using CanonicalAxisIndex.
* Dies on out of range index.
*/
inline int shape(int index) const {
return shape_[CanonicalAxisIndex(index)];
}
inline int num_axes() const { return shape_.size(); }
inline int count() const { return count_; } /**
* @brief Compute the volume of a slice; i.e., the product of dimensions
* among a range of axes.
*
* @param start_axis The first axis to include in the slice.
*
* @param end_axis The first axis to exclude from the slice.
*/
inline int count(int start_axis, int end_axis) const {
CHECK_LE(start_axis, end_axis);
CHECK_GE(start_axis, 0);
CHECK_GE(end_axis, 0);
CHECK_LE(start_axis, num_axes());
CHECK_LE(end_axis, num_axes());
int count = 1;
for (int i = start_axis; i < end_axis; ++i) {
count *= shape(i);
}
return count;
}
/**
* @brief Compute the volume of a slice spanning from a particular first
* axis to the final axis.
*
* @param start_axis The first axis to include in the slice.
*/
inline int count(int start_axis) const {
return count(start_axis, num_axes());
} /**
* @brief Returns the 'canonical' version of a (usually) user-specified axis,
* allowing for negative indexing (e.g., -1 for the last axis).
*
* @param index the axis index.
* If 0 <= index < num_axes(), return index.
* If -num_axes <= index <= -1, return (num_axes() - (-index)),
* e.g., the last axis index (num_axes() - 1) if index == -1,
* the second to last if index == -2, etc.
* Dies on out of range index.
*/
inline int CanonicalAxisIndex(int axis_index) const {
CHECK_GE(axis_index, -num_axes())
<< "axis " << axis_index << " out of range for " << num_axes()
<< "-D Blob with shape " << shape_string();
CHECK_LT(axis_index, num_axes())
<< "axis " << axis_index << " out of range for " << num_axes()
<< "-D Blob with shape " << shape_string();
if (axis_index < 0) {
return axis_index + num_axes();
}
return axis_index;
} /// @brief Deprecated legacy shape accessor num: use shape(0) instead.
inline int num() const { return LegacyShape(0); }
/// @brief Deprecated legacy shape accessor channels: use shape(1) instead.
inline int channels() const { return LegacyShape(1); }
/// @brief Deprecated legacy shape accessor height: use shape(2) instead.
inline int height() const { return LegacyShape(2); }
/// @brief Deprecated legacy shape accessor width: use shape(3) instead.
inline int width() const { return LegacyShape(3); }
inline int LegacyShape(int index) const {
CHECK_LE(num_axes(), 4)
<< "Cannot use legacy accessors on Blobs with > 4 axes.";
CHECK_LT(index, 4);
CHECK_GE(index, -4);
if (index >= num_axes() || index < -num_axes()) {
// Axis is out of range, but still in [0, 3] (or [-4, -1] for reverse
// indexing) -- this special case simulates the one-padding used to fill
// extraneous axes of legacy blobs.
return 1;
}
return shape(index);
} inline int offset(const int n, const int c = 0, const int h = 0,
const int w = 0) const {
CHECK_GE(n, 0);
CHECK_LE(n, num());
CHECK_GE(channels(), 0);
CHECK_LE(c, channels());
CHECK_GE(height(), 0);
CHECK_LE(h, height());
CHECK_GE(width(), 0);
CHECK_LE(w, width());
return ((n * channels() + c) * height() + h) * width() + w;
} inline int offset(const vector<int>& indices) const {
CHECK_LE(indices.size(), num_axes());
int offset = 0;
for (int i = 0; i < num_axes(); ++i) {
offset *= shape(i);
if (indices.size() > i) {
CHECK_GE(indices[i], 0);
CHECK_LT(indices[i], shape(i));
offset += indices[i];
}
}
return offset;
}
/**
* @brief Copy from a source Blob.
*
* @param source the Blob to copy from
* @param copy_diff if false, copy the data; if true, copy the diff
* @param reshape if false, require this Blob to be pre-shaped to the shape
* of other (and die otherwise); if true, Reshape this Blob to other's
* shape if necessary
*/
void CopyFrom(const Blob<Dtype>& source, bool copy_diff = false,
bool reshape = false); inline Dtype data_at(const int n, const int c, const int h,
const int w) const {
return cpu_data()[offset(n, c, h, w)];
} inline Dtype diff_at(const int n, const int c, const int h,
const int w) const {
return cpu_diff()[offset(n, c, h, w)];
} inline Dtype data_at(const vector<int>& index) const {
return cpu_data()[offset(index)];
} inline Dtype diff_at(const vector<int>& index) const {
return cpu_diff()[offset(index)];
} inline const shared_ptr<SyncedMemory>& data() const {
CHECK(data_);
return data_;
} inline const shared_ptr<SyncedMemory>& diff() const {
CHECK(diff_);
return diff_;
} const Dtype* cpu_data() const;
void set_cpu_data(Dtype* data);
const Dtype* gpu_data() const;
const Dtype* cpu_diff() const;
const Dtype* gpu_diff() const;
Dtype* mutable_cpu_data();
Dtype* mutable_gpu_data();
Dtype* mutable_cpu_diff();
Dtype* mutable_gpu_diff();
void Update();
void FromProto(const BlobProto& proto, bool reshape = true);
void ToProto(BlobProto* proto, bool write_diff = false) const; /// @brief Compute the sum of absolute values (L1 norm) of the data.
Dtype asum_data() const;
/// @brief Compute the sum of absolute values (L1 norm) of the diff.
Dtype asum_diff() const;
/// @brief Compute the sum of squares (L2 norm squared) of the data.
Dtype sumsq_data() const;
/// @brief Compute the sum of squares (L2 norm squared) of the diff.
Dtype sumsq_diff() const; /// @brief Scale the blob data by a constant factor.
void scale_data(Dtype scale_factor);
/// @brief Scale the blob diff by a constant factor.
void scale_diff(Dtype scale_factor); /**
* @brief Set the data_ shared_ptr to point to the SyncedMemory holding the
* data_ of Blob other -- useful in Layer%s which simply perform a copy
* in their Forward pass.
*
* This deallocates the SyncedMemory holding this Blob's data_, as
* shared_ptr calls its destructor when reset with the "=" operator.
*/
void ShareData(const Blob& other);
/**
* @brief Set the diff_ shared_ptr to point to the SyncedMemory holding the
* diff_ of Blob other -- useful in Layer%s which simply perform a copy
* in their Forward pass.
*
* This deallocates the SyncedMemory holding this Blob's diff_, as
* shared_ptr calls its destructor when reset with the "=" operator.
*/
void ShareDiff(const Blob& other); bool ShapeEquals(const BlobProto& other); protected:
shared_ptr<SyncedMemory> data_;
shared_ptr<SyncedMemory> diff_;
vector<int> shape_;
int count_;
int capacity_; DISABLE_COPY_AND_ASSIGN(Blob);
}; // class Blob } // namespace caffe #endif // CAFFE_BLOB_HPP_

【Caffe代码解析】Blob的更多相关文章

  1. 【Caffe代码解析】compute_image_mean

    功能: 计算训练数据库的平均图像. 由于平均归一化训练图像会对结果有提升,所以Caffe里面,提供了一个可选项. 用法: compute_image_mean [FLAGS] INPUT_DB [OU ...

  2. 【Caffe代码解析】Layer网络层

    Layer 功能: 是全部的网络层的基类,当中.定义了一些通用的接口,比方前馈.反馈.reshape,setup等. #ifndef CAFFE_LAYER_H_ #define CAFFE_LAYE ...

  3. 【caffe Blob】caffe中与Blob相关的代码注释、使用举例

    首先,Blob使用的小例子(通过运行结果即可知道相关功能): #include <vector> #include <caffe/blob.hpp> #include < ...

  4. 解析数学表达式 代码解析AST语法树

    2019年2月20日09:18:22 AST语法树自己写代码解析的话就比较麻烦,有现成的库可以解析PHP,就像webpack就是自己解析js的语法代码,编译成各种版本的可用代码 github http ...

  5. (Caffe)基本类Blob,Layer,Net(一)

    本文地址:http://blog.csdn.net/mounty_fsc/article/details/51085654 Caffe中,Blob.Layer,Net,Solver是最为核心的类,下面 ...

  6. matrix_multiply代码解析

    matrix_multiply代码解析 关于matrix_multiply 程序执行代码里两个矩阵的乘法,并将相乘结果打印在屏幕上. 示例的主要目的是展现怎么实现一个自定义CPU计算任务. 参考:ht ...

  7. VBA常用代码解析

    031 删除工作表中的空行 如果需要删除工作表中所有的空行,可以使用下面的代码. Sub DelBlankRow() DimrRow As Long DimLRow As Long Dimi As L ...

  8. [nRF51822] 12、基础实验代码解析大全 · 实验19 - PWM

    一.PWM概述: PWM(Pulse Width Modulation):脉冲宽度调制技术,通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形. PWM 的几个基本概念: 1) 占空比:占空比是指 ...

  9. [nRF51822] 11、基础实验代码解析大全 · 实验16 - 内部FLASH读写

     一.实验内容: 通过串口发送单个字符到NRF51822,NRF51822 接收到字符后将其写入到FLASH 的最后一页,之后将其读出并通过串口打印出数据. 二.nRF51822芯片内部flash知识 ...

随机推荐

  1. uvalive4108(线段树)

    uvalive4108 题意 按顺序给出 n 个矩形,每给出一个矩形,统计它在多长的部分是最高的,并把这个长度称为该矩形的覆盖度,求最后总的覆盖度(每次得到的矩形的覆盖度之和) 分析 线段树.用两个数 ...

  2. jcl sort comp3 to 表示型

    Lets say your packed data is at 10th column and is of length 6, S9(4)V99 You could try the following ...

  3. Oracle remove duplicate

    DELETE FROM your_table WHERE rowid not in (SELECT MIN(rowid) FROM your_table GROUP BY column1, colum ...

  4. Codeforces E. Bash Plays with Functions(积性函数DP)

    链接 codeforces 题解 结论:\(f_0(n)=2^{n的质因子个数}\)= 根据性质可知\(f_0()\)是一个积性函数 对于\(f_{r+1}()\)化一下式子 对于 \[f_{r+1} ...

  5. 本地navicatl连接linux

    首选你Linux服务器上要装配好了MySQL数据库.输入: # mysql -u root -proot mysql>GRANT ALL PRIVILEGES ON *.* TO 'root'@ ...

  6. 代理模式(Proxy)--动态代理(JDK)

    在是上一篇博客中实现了静态代理. 在上篇的结尾提到了一个问题: 思考:如果我们下需要对火车,自行车实现相同的代理,我们又该如何实现呢? 这篇博客就来解决这个问题: 解决这类问题需要用到动态代理技术,实 ...

  7. iOS开发 Swift开发数独游戏(四) 游戏界面的界面与逻辑

    一.游戏界面涉及到的功能点 1)数独格子的建模 (1)绘制数独格子要考虑到标记功能 所以要在每个格子内预先塞入9个标记数字,仅数独格子算下来就有9*9*9=729个格子且存在大量嵌套(这导致我在操作S ...

  8. 关于spring.net的面向切面编程 (Aspect Oriented Programming with Spring.NET)-简介

    本文翻译自Spring.NET官方文档Version 1.3.2. 受限于个人知识水平,有些地方翻译可能不准确,但是我还是希望我的这些微薄的努力能为他人提供帮助. 侵删. 简介 Aspect-Orie ...

  9. XCode工程内多Targets教程

    作者  透明de面具 原帖地址  http://www.cocoachina.com/bbs/read.php?tid-10972-fpage-0-toread--page-1.html    相信很 ...

  10. django 分页django-pure-pagination

    虽然django自带了一个paginator,但不是很方便,我们使用django-pure-pagination github地址https://github.com/jamespacileo/dja ...