【Caffe代码解析】Blob
主要功能:
Blob 是Caffe作为传输数据的媒介,不管是网络权重參数,还是输入数据,都是转化为Blob数据结构来存储,网络,求解器等都是直接与此结构打交道的。
其直观的能够把它看成一个有4纬的结构体(包括数据和梯度)。而实际上,它们仅仅是一维的指针而已,其4维结构通过shape属性得以计算出来(依据C语言的数据顺序)。
其成员变量有:
 protected:
  shared_ptr<SyncedMemory> data_;// 存放数据
  shared_ptr<SyncedMemory> diff_;//存放梯度
  vector<int> shape_; //存放形状
  int count_; //数据个数
  int capacity_; //数据容量成员函数,见的最多的有:
  const Dtype* cpu_data() const; //cpu使用的数据
  void set_cpu_data(Dtype* data);//用数据块的值来blob里面的data。
  const Dtype* gpu_data() const;//返回不可更改的指针。下同
  const Dtype* cpu_diff() const;
  const Dtype* gpu_diff() const;
  Dtype* mutable_cpu_data();//返回可更改的指针,下同
  Dtype* mutable_gpu_data();
  Dtype* mutable_cpu_diff();
  Dtype* mutable_gpu_diff();总之,带mutable_开头的意味着能够对返回的指针内容进行更改,而不带mutable_开头的返回const 指针。不能对其指针的内容进行改动,
int offset(const int n, const int c = 0, const int h = 0,const int w = 0) const
// 通过n,c,h,w 4个參数来计算一维向量的偏移量。
Dtype data_at(const int n, const int c, const int h,const int w) const//通过n,c,h,w 4个參数来来获取该向量位置上的值。
Dtype diff_at(const int n, const int c, const int h,const int w) const//同上
inline const shared_ptr<SyncedMemory>& data() const {
    CHECK(data_);
    return data_;//返回数据,不能改动
  }
inline const shared_ptr<SyncedMemory>& diff() const {
    CHECK(diff_);
    return diff_;//返回梯度。不能改动
  }
Reshape(...)//reshape 有多种多态的实现,能够是四个数字。长度为四的vector。其他blob等。
if (count_ > capacity_) {
    capacity_ = count_;
    data_.reset(new SyncedMemory(capacity_ * sizeof(Dtype)));
    diff_.reset(new SyncedMemory(capacity_ * sizeof(Dtype)));
  }//当空间不够的时候,须要扩大容量,reset。
源码:
#ifndef CAFFE_BLOB_HPP_
#define CAFFE_BLOB_HPP_
#include <algorithm>
#include <string>
#include <vector>
#include "caffe/common.hpp"
#include "caffe/proto/caffe.pb.h"
#include "caffe/syncedmem.hpp"
#include "caffe/util/math_functions.hpp"
const int kMaxBlobAxes = INT_MAX;
namespace caffe {
/**
 * @brief A wrapper around SyncedMemory holders serving as the basic
 *        computational unit through which Layer%s, Net%s, and Solver%s
 *        interact.
 *
 * TODO(dox): more thorough description.
 */
template <typename Dtype>
class Blob {
 public:
  Blob()
       : data_(), diff_(), count_(0), capacity_(0) {}
  /// @brief Deprecated; use <code>Blob(const vector<int>& shape)</code>.
  explicit Blob(const int num, const int channels, const int height,
      const int width);
  explicit Blob(const vector<int>& shape);
  /// @brief Deprecated; use <code>Reshape(const vector<int>& shape)</code>.
  void Reshape(const int num, const int channels, const int height,
      const int width);
  /**
   * @brief Change the dimensions of the blob, allocating new memory if
   *        necessary.
   *
   * This function can be called both to create an initial allocation
   * of memory, and to adjust the dimensions of a top blob during Layer::Reshape
   * or Layer::Forward. When changing the size of blob, memory will only be
   * reallocated if sufficient memory does not already exist, and excess memory
   * will never be freed.
   *
   * Note that reshaping an input blob and immediately calling Net::Backward is
   * an error; either Net::Forward or Net::Reshape need to be called to
   * propagate the new input shape to higher layers.
   */
  void Reshape(const vector<int>& shape);
  void Reshape(const BlobShape& shape);
  void ReshapeLike(const Blob& other);
  inline string shape_string() const {
    ostringstream stream;
    for (int i = 0; i < shape_.size(); ++i) {
      stream << shape_[i] << " ";
    }
    stream << "(" << count_ << ")";
    return stream.str();
  }
  inline const vector<int>& shape() const { return shape_; }
  /**
   * @brief Returns the dimension of the index-th axis (or the negative index-th
   *        axis from the end, if index is negative).
   *
   * @param index the axis index, which may be negative as it will be
   *        "canonicalized" using CanonicalAxisIndex.
   *        Dies on out of range index.
   */
  inline int shape(int index) const {
    return shape_[CanonicalAxisIndex(index)];
  }
  inline int num_axes() const { return shape_.size(); }
  inline int count() const { return count_; }
  /**
   * @brief Compute the volume of a slice; i.e., the product of dimensions
   *        among a range of axes.
   *
   * @param start_axis The first axis to include in the slice.
   *
   * @param end_axis The first axis to exclude from the slice.
   */
  inline int count(int start_axis, int end_axis) const {
    CHECK_LE(start_axis, end_axis);
    CHECK_GE(start_axis, 0);
    CHECK_GE(end_axis, 0);
    CHECK_LE(start_axis, num_axes());
    CHECK_LE(end_axis, num_axes());
    int count = 1;
    for (int i = start_axis; i < end_axis; ++i) {
      count *= shape(i);
    }
    return count;
  }
  /**
   * @brief Compute the volume of a slice spanning from a particular first
   *        axis to the final axis.
   *
   * @param start_axis The first axis to include in the slice.
   */
  inline int count(int start_axis) const {
    return count(start_axis, num_axes());
  }
  /**
   * @brief Returns the 'canonical' version of a (usually) user-specified axis,
   *        allowing for negative indexing (e.g., -1 for the last axis).
   *
   * @param index the axis index.
   *        If 0 <= index < num_axes(), return index.
   *        If -num_axes <= index <= -1, return (num_axes() - (-index)),
   *        e.g., the last axis index (num_axes() - 1) if index == -1,
   *        the second to last if index == -2, etc.
   *        Dies on out of range index.
   */
  inline int CanonicalAxisIndex(int axis_index) const {
    CHECK_GE(axis_index, -num_axes())
        << "axis " << axis_index << " out of range for " << num_axes()
        << "-D Blob with shape " << shape_string();
    CHECK_LT(axis_index, num_axes())
        << "axis " << axis_index << " out of range for " << num_axes()
        << "-D Blob with shape " << shape_string();
    if (axis_index < 0) {
      return axis_index + num_axes();
    }
    return axis_index;
  }
  /// @brief Deprecated legacy shape accessor num: use shape(0) instead.
  inline int num() const { return LegacyShape(0); }
  /// @brief Deprecated legacy shape accessor channels: use shape(1) instead.
  inline int channels() const { return LegacyShape(1); }
  /// @brief Deprecated legacy shape accessor height: use shape(2) instead.
  inline int height() const { return LegacyShape(2); }
  /// @brief Deprecated legacy shape accessor width: use shape(3) instead.
  inline int width() const { return LegacyShape(3); }
  inline int LegacyShape(int index) const {
    CHECK_LE(num_axes(), 4)
        << "Cannot use legacy accessors on Blobs with > 4 axes.";
    CHECK_LT(index, 4);
    CHECK_GE(index, -4);
    if (index >= num_axes() || index < -num_axes()) {
      // Axis is out of range, but still in [0, 3] (or [-4, -1] for reverse
      // indexing) -- this special case simulates the one-padding used to fill
      // extraneous axes of legacy blobs.
      return 1;
    }
    return shape(index);
  }
  inline int offset(const int n, const int c = 0, const int h = 0,
      const int w = 0) const {
    CHECK_GE(n, 0);
    CHECK_LE(n, num());
    CHECK_GE(channels(), 0);
    CHECK_LE(c, channels());
    CHECK_GE(height(), 0);
    CHECK_LE(h, height());
    CHECK_GE(width(), 0);
    CHECK_LE(w, width());
    return ((n * channels() + c) * height() + h) * width() + w;
  }
  inline int offset(const vector<int>& indices) const {
    CHECK_LE(indices.size(), num_axes());
    int offset = 0;
    for (int i = 0; i < num_axes(); ++i) {
      offset *= shape(i);
      if (indices.size() > i) {
        CHECK_GE(indices[i], 0);
        CHECK_LT(indices[i], shape(i));
        offset += indices[i];
      }
    }
    return offset;
  }
  /**
   * @brief Copy from a source Blob.
   *
   * @param source the Blob to copy from
   * @param copy_diff if false, copy the data; if true, copy the diff
   * @param reshape if false, require this Blob to be pre-shaped to the shape
   *        of other (and die otherwise); if true, Reshape this Blob to other's
   *        shape if necessary
   */
  void CopyFrom(const Blob<Dtype>& source, bool copy_diff = false,
      bool reshape = false);
  inline Dtype data_at(const int n, const int c, const int h,
      const int w) const {
    return cpu_data()[offset(n, c, h, w)];
  }
  inline Dtype diff_at(const int n, const int c, const int h,
      const int w) const {
    return cpu_diff()[offset(n, c, h, w)];
  }
  inline Dtype data_at(const vector<int>& index) const {
    return cpu_data()[offset(index)];
  }
  inline Dtype diff_at(const vector<int>& index) const {
    return cpu_diff()[offset(index)];
  }
  inline const shared_ptr<SyncedMemory>& data() const {
    CHECK(data_);
    return data_;
  }
  inline const shared_ptr<SyncedMemory>& diff() const {
    CHECK(diff_);
    return diff_;
  }
  const Dtype* cpu_data() const;
  void set_cpu_data(Dtype* data);
  const Dtype* gpu_data() const;
  const Dtype* cpu_diff() const;
  const Dtype* gpu_diff() const;
  Dtype* mutable_cpu_data();
  Dtype* mutable_gpu_data();
  Dtype* mutable_cpu_diff();
  Dtype* mutable_gpu_diff();
  void Update();
  void FromProto(const BlobProto& proto, bool reshape = true);
  void ToProto(BlobProto* proto, bool write_diff = false) const;
  /// @brief Compute the sum of absolute values (L1 norm) of the data.
  Dtype asum_data() const;
  /// @brief Compute the sum of absolute values (L1 norm) of the diff.
  Dtype asum_diff() const;
  /// @brief Compute the sum of squares (L2 norm squared) of the data.
  Dtype sumsq_data() const;
  /// @brief Compute the sum of squares (L2 norm squared) of the diff.
  Dtype sumsq_diff() const;
  /// @brief Scale the blob data by a constant factor.
  void scale_data(Dtype scale_factor);
  /// @brief Scale the blob diff by a constant factor.
  void scale_diff(Dtype scale_factor);
  /**
   * @brief Set the data_ shared_ptr to point to the SyncedMemory holding the
   *        data_ of Blob other -- useful in Layer%s which simply perform a copy
   *        in their Forward pass.
   *
   * This deallocates the SyncedMemory holding this Blob's data_, as
   * shared_ptr calls its destructor when reset with the "=" operator.
   */
  void ShareData(const Blob& other);
  /**
   * @brief Set the diff_ shared_ptr to point to the SyncedMemory holding the
   *        diff_ of Blob other -- useful in Layer%s which simply perform a copy
   *        in their Forward pass.
   *
   * This deallocates the SyncedMemory holding this Blob's diff_, as
   * shared_ptr calls its destructor when reset with the "=" operator.
   */
  void ShareDiff(const Blob& other);
  bool ShapeEquals(const BlobProto& other);
 protected:
  shared_ptr<SyncedMemory> data_;
  shared_ptr<SyncedMemory> diff_;
  vector<int> shape_;
  int count_;
  int capacity_;
  DISABLE_COPY_AND_ASSIGN(Blob);
};  // class Blob
}  // namespace caffe
#endif  // CAFFE_BLOB_HPP_
【Caffe代码解析】Blob的更多相关文章
- 【Caffe代码解析】compute_image_mean
		功能: 计算训练数据库的平均图像. 由于平均归一化训练图像会对结果有提升,所以Caffe里面,提供了一个可选项. 用法: compute_image_mean [FLAGS] INPUT_DB [OU ... 
- 【Caffe代码解析】Layer网络层
		Layer 功能: 是全部的网络层的基类,当中.定义了一些通用的接口,比方前馈.反馈.reshape,setup等. #ifndef CAFFE_LAYER_H_ #define CAFFE_LAYE ... 
- 【caffe Blob】caffe中与Blob相关的代码注释、使用举例
		首先,Blob使用的小例子(通过运行结果即可知道相关功能): #include <vector> #include <caffe/blob.hpp> #include < ... 
- 解析数学表达式 代码解析AST语法树
		2019年2月20日09:18:22 AST语法树自己写代码解析的话就比较麻烦,有现成的库可以解析PHP,就像webpack就是自己解析js的语法代码,编译成各种版本的可用代码 github http ... 
- (Caffe)基本类Blob,Layer,Net(一)
		本文地址:http://blog.csdn.net/mounty_fsc/article/details/51085654 Caffe中,Blob.Layer,Net,Solver是最为核心的类,下面 ... 
- matrix_multiply代码解析
		matrix_multiply代码解析 关于matrix_multiply 程序执行代码里两个矩阵的乘法,并将相乘结果打印在屏幕上. 示例的主要目的是展现怎么实现一个自定义CPU计算任务. 参考:ht ... 
- VBA常用代码解析
		031 删除工作表中的空行 如果需要删除工作表中所有的空行,可以使用下面的代码. Sub DelBlankRow() DimrRow As Long DimLRow As Long Dimi As L ... 
- [nRF51822] 12、基础实验代码解析大全 · 实验19 - PWM
		一.PWM概述: PWM(Pulse Width Modulation):脉冲宽度调制技术,通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形. PWM 的几个基本概念: 1) 占空比:占空比是指 ... 
- [nRF51822] 11、基础实验代码解析大全 · 实验16 - 内部FLASH读写
		一.实验内容: 通过串口发送单个字符到NRF51822,NRF51822 接收到字符后将其写入到FLASH 的最后一页,之后将其读出并通过串口打印出数据. 二.nRF51822芯片内部flash知识 ... 
随机推荐
- uvalive4108(线段树)
			uvalive4108 题意 按顺序给出 n 个矩形,每给出一个矩形,统计它在多长的部分是最高的,并把这个长度称为该矩形的覆盖度,求最后总的覆盖度(每次得到的矩形的覆盖度之和) 分析 线段树.用两个数 ... 
- jcl sort comp3 to 表示型
			Lets say your packed data is at 10th column and is of length 6, S9(4)V99 You could try the following ... 
- Oracle remove duplicate
			DELETE FROM your_table WHERE rowid not in (SELECT MIN(rowid) FROM your_table GROUP BY column1, colum ... 
- Codeforces E. Bash Plays with Functions(积性函数DP)
			链接 codeforces 题解 结论:\(f_0(n)=2^{n的质因子个数}\)= 根据性质可知\(f_0()\)是一个积性函数 对于\(f_{r+1}()\)化一下式子 对于 \[f_{r+1} ... 
- 本地navicatl连接linux
			首选你Linux服务器上要装配好了MySQL数据库.输入: # mysql -u root -proot mysql>GRANT ALL PRIVILEGES ON *.* TO 'root'@ ... 
- 代理模式(Proxy)--动态代理(JDK)
			在是上一篇博客中实现了静态代理. 在上篇的结尾提到了一个问题: 思考:如果我们下需要对火车,自行车实现相同的代理,我们又该如何实现呢? 这篇博客就来解决这个问题: 解决这类问题需要用到动态代理技术,实 ... 
- iOS开发 Swift开发数独游戏(四) 游戏界面的界面与逻辑
			一.游戏界面涉及到的功能点 1)数独格子的建模 (1)绘制数独格子要考虑到标记功能 所以要在每个格子内预先塞入9个标记数字,仅数独格子算下来就有9*9*9=729个格子且存在大量嵌套(这导致我在操作S ... 
- 关于spring.net的面向切面编程 (Aspect Oriented Programming with Spring.NET)-简介
			本文翻译自Spring.NET官方文档Version 1.3.2. 受限于个人知识水平,有些地方翻译可能不准确,但是我还是希望我的这些微薄的努力能为他人提供帮助. 侵删. 简介 Aspect-Orie ... 
- XCode工程内多Targets教程
			作者 透明de面具 原帖地址 http://www.cocoachina.com/bbs/read.php?tid-10972-fpage-0-toread--page-1.html 相信很 ... 
- django 分页django-pure-pagination
			虽然django自带了一个paginator,但不是很方便,我们使用django-pure-pagination github地址https://github.com/jamespacileo/dja ... 
