四边形不等式优化DP——石子合并问题 学习笔记
好方啊马上就要区域赛了连DP都不会QAQ
毛子青《动态规划算法的优化技巧》论文里面提到了一类问题:石子合并。
n堆石子。现要将石子有次序地合并成一堆。规定每次只能选相邻的2堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的得分。
求出将n堆石子合并成一堆的最小得分和最大得分以及相应的合并方案。
设m[i,j]表示合并d[i..j]所得到的最小得分。
状态转移方程: 
总的时间复杂度为O(n3)。
【优化方案】
四边形不等式:
m[i,j]满足四边形不等式
令s[i,j]=max{k | m[i,j]=m[i,k-1]+m[k,j]+w[i,j] }
m[i,j]满足四边形不等式可以推出函数s[i,j]的单调性,即s[i,j]≤s[i,j+1]≤s[i+1,j+1], i≤j
优化的状态转移方程:
状态转移方程 m[i][j]=min{m[i][k-1]+m[k][j]}+w[i][j]} (i<=k<=j)
如果w同时满足四边形不等式和区间单调关系,则m也满足四边形不等式
四边形不等式优化的作用:m满足四边形不等式 -> k最优决策单调性
参考博客:http://blog.csdn.net/bnmjmz/article/details/41308919
#include <string.h>
#include <iostream>
#include <list>
#include <map>
#include <set>
#include <stack>
#include <string>
#include <utility>
#include <vector>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <queue>
#define LL long long
#define MOD 1000000007 using namespace std; const int INF = 0x3f3f3f;
const int N = ; int m[N][N]; //m[i,j]表示合并d[i..j]所得到的最小得分
int s[N][N]; //s[i,j]记录合并方案
int sum[N]; //前i个石子堆石子数量和
int n; int solve()
{
for(int i=; i<=n; i++)
{
m[i][i] = ; //边界条件
s[i][i] = i;
}
for(int l=; l<n; l++) //枚举 l = j' - i
{
for(int i=; i+l<=n; i++)
{
int j = i+l;
int tmp = INF;
int k = ;
for(int div=s[i][j-]; div<=s[i+][j];div++) //最优决策的单调性
{
if(tmp > m[i][div] + m[div+][j] + sum[j] - sum[i-] )
{
tmp = m[i][div] + m[div+][j] + sum[j] - sum[i-];
k = div;
}
}
m[i][j] = tmp;
s[i][j] = k;
}
}
return m[][n];
} int main()
{
while(scanf("%d",&n)!=EOF)
{
sum[] = ;
for(int i=; i<=n; i++)
{
int a;
scanf("%d",&a);
sum[i] = sum[i-] + a;
}
printf("%d\n",solve());
}
return ;
}
四边形不等式优化DP——石子合并问题 学习笔记的更多相关文章
- 四边形不等式优化_石子合并问题_C++
在动态规划中,经常遇到形如下式的状态转移方程: m(i,j)=min{m(i,k-1),m(k,j)}+w(i,j)(i≤k≤j)(min也可以改为max) 上述的m(i,j)表示区间[i,j]上的某 ...
- <四边形不等式优化>[NOI1995]石子合并
留个坑 挺套路的 明天来写个总结 #include<cstdio> #include<algorithm> inline int read() { int x = 0,f = ...
- codevs3002石子归并3(四边形不等式优化dp)
3002 石子归并 3 参考 http://it.dgzx.net/drkt/oszt/zltk/yxlw/dongtai3.htm 时间限制: 1 s 空间限制: 256000 KB 题目等级 ...
- hdu 2829 Lawrence(四边形不等式优化dp)
T. E. Lawrence was a controversial figure during World War I. He was a British officer who served in ...
- BZOJ1563/洛谷P1912 诗人小G 【四边形不等式优化dp】
题目链接 洛谷P1912[原题,需输出方案] BZOJ1563[无SPJ,只需输出结果] 题解 四边形不等式 什么是四边形不等式? 一个定义域在整数上的函数\(val(i,j)\),满足对\(\for ...
- 【转】斜率优化DP和四边形不等式优化DP整理
(自己的理解:首先考虑单调队列,不行时考虑斜率,再不行就考虑不等式什么的东西) 当dp的状态转移方程dp[i]的状态i需要从前面(0~i-1)个状态找出最优子决策做转移时 我们常常需要双重循环 (一重 ...
- CF321E Ciel and Gondolas Wqs二分 四边形不等式优化dp 决策单调性
LINK:CF321E Ciel and Gondolas 很少遇到这么有意思的题目了.虽然很套路.. 容易想到dp \(f_{i,j}\)表示前i段分了j段的最小值 转移需要维护一个\(cost(i ...
- HDU 2829 Lawrence (斜率优化DP或四边形不等式优化DP)
题意:给定 n 个数,要你将其分成m + 1组,要求每组数必须是连续的而且要求得到的价值最小.一组数的价值定义为该组内任意两个数乘积之和,如果某组中仅有一个数,那么该组数的价值为0. 析:DP状态方程 ...
- POJ 1160 四边形不等式优化DP Post Office
d(i, j)表示用i个邮局覆盖前j个村庄所需的最小花费 则有状态转移方程:d(i, j) = min{ d(i-1, k) + w(k+1, j) } 其中w(i, j)的值是可以预处理出来的. 下 ...
随机推荐
- 三种Web前端框架比较与介绍--Vue, react, angular
一.Angular 1.MVVM(Model)(View)(View-model): 2.模块化(Module)控制器(Contoller)依赖注入: 3.双向数据绑定:界面的操作能实时反映到数据,数 ...
- App Distribution Guide (二)
Configuring Your Xcode Project for Distribution You can edit your project settings anytime, but som ...
- Ubuntu中彻底修改用户名及密码
转自:http://blog.csdn.net/sailor201211/article/details/52305591 方案二:修改与用户和组相关的配置文件 这种方法更加本质,直接修改与用户和组相 ...
- perl学习笔记——输入与输出
读取标准输入 用<STDIN>进行标准输入:chomp($line=<STDIN>); 如果读到文件尾,行输入操作符就会返回undef.便可利用这一性质跳出循环. while( ...
- hibernate学习系列-----(2)hibernate核心接口和工作机制
在上一篇文章hibernate学习系列-----(1)开发环境搭建中,大致总结了hibernate的开发环境的搭建步骤,今天,我们继续了解有关hibernate的知识,先说说这篇文章的主要内容吧: C ...
- 24.JAVA编程思想——违例差错控制
24.JAVA编程思想--违例差错控制 Java 的基本原理就是"形式错误的代码不会执行". 与C++类似,捕获错误最理想的是在编译期间,最好在试图执行程序曾经.然而.并不是全部错 ...
- Python——os.path.dirname(__file__) 与 os.path.join(str,str)
Python os.path.dirname(__file__) Python os.path.join(str,str) (1).当"print os.path.dirname(__f ...
- python——Container之字典(dict)详解
字典(dictionary)是除列表以外python之中最灵活的内置数据结构类型.列表是有序的对象结合,字典是无序的对象集合.两者之间的区别在于:字典当中的元素是通过键来存取的,而不是通过偏移存取. ...
- unordered_map 与 map 的对比(转)
unordered_map和map类似,都是存储的key-value的值,可以通过key快速索引到value.不同的是unordered_map不会根据key的大小进行排序, 存储时是根据key的ha ...
- (七)Thymeleaf的 th:* 属性之—— th: ->设值& 遍历迭代& 条件判断
3.4 属性值的设置 3.4.1 使用th:attr来设置属性的值 <form action="subscribe.html" th:attr="action=@{ ...