The goal of backpropagation is to compute the partial derivatives ∂C/∂w and ∂C/∂b of the cost function C with respect to any weight ww or bias b in the network.

we use the quadratic cost function

   

two assumptions :

  1: The first assumption we need is that the cost function can be written as an average

        (case for the quadratic cost function)

    The reason we need this assumption is because what backpropagation actually lets us do is compute the partial derivatives

  ∂Cx/∂w and ∂Cx/∂b for a single training example. We then recover ∂C/∂w and ∂C/∂b by averaging over training examples. In

  fact, with this assumption in mind, we'll suppose the training example x has been fixed, and drop the x subscript, writing the

  cost Cx as C. We'll eventually put the x back in, but for now it's a notational nuisance that is better left implicit.

  2: The cost function can be written as a function of the outputs from the neural network

  

the Hadamard product

   (s⊙t)j=sjtj(s⊙t)j=sjtj

  

The four fundamental equations behind backpropagation

  

BP1 

   :the error in the jth neuron in the lth layer

     

    You might wonder why the demon is changing the weighted input zlj. Surely it'd be more natural to imagine the demon changing

   the output activation alj, with the result that we'd be using ∂C/∂alj as our measure of error. In fact, if you do this things work out quite

  similarly to the discussion below. But it turns out to make the presentation of backpropagation a little more algebraically complicated.

   So we'll stick with δlj=∂C/∂zlj as our measure of error.

  An equation for the error in the output layer, δL: The components of δL are given by

  

  it's easy to rewrite the equation in a matrix-based form, as

  

  

  

BP2

  

  

  

BP3

  

  

BP4

  

  

  

The backpropagation algorithm

  

    

      Of course, to implement stochastic gradient descent in practice you also need an outer loop generating mini-batches

    of training examples, and an outer loop stepping through multiple epochs of training. I've omitted those for simplicity.

reference: http://neuralnetworksanddeeplearning.com/chap2.html

------------------------------------------------------------------------------------------------

reference:Machine Learning byAndrew Ng

review backpropagation的更多相关文章

  1. (Review cs231n) Backpropagation and Neural Network

    损失由两部分组成: 数据损失+正则化损失(data loss + regularization) 想得到损失函数关于权值矩阵W的梯度表达式,然后进性优化操作(损失相当于海拔,你在山上的位置相当于W,你 ...

  2. A review of learning in biologically plausible spiking neural networks

    郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! Contents: ABSTRACT 1. Introduction 2. Biological background 2.1. Spik ...

  3. Deep Learning论文翻译(Nature Deep Review)

    原论文出处:https://www.nature.com/articles/nature14539 by Yann LeCun, Yoshua Bengio & Geoffrey Hinton ...

  4. 我们是怎么做Code Review的

    前几天看了<Code Review 程序员的寄望与哀伤>,想到我们团队开展Code Review也有2年了,结果还算比较满意,有些经验应该可以和大家一起分享.探讨.我们为什么要推行Code ...

  5. Code Review 程序员的寄望与哀伤

    一个程序员,他写完了代码,在测试环境通过了测试,然后他把它发布到了线上生产环境,但很快就发现在生产环境上出了问题,有潜在的 bug. 事后分析,是生产环境的一些微妙差异,使得这种 bug 场景在线下测 ...

  6. AutoMapper:Unmapped members were found. Review the types and members below. Add a custom mapping expression, ignore, add a custom resolver, or modify the source/destination type

    异常处理汇总-后端系列 http://www.cnblogs.com/dunitian/p/4523006.html 应用场景:ViewModel==>Mode映射的时候出错 AutoMappe ...

  7. Git和Code Review流程

    Code Review流程1.根据开发任务,建立git分支, 分支名称模式为feature/任务名,比如关于API相关的一项任务,建立分支feature/api.git checkout -b fea ...

  8. 神经网络与深度学习(3):Backpropagation算法

    本文总结自<Neural Networks and Deep Learning>第2章的部分内容. Backpropagation算法 Backpropagation核心解决的问题: ∂C ...

  9. 故障review的一些总结

    故障review的一些总结 故障review的目的 归纳出现故障产生的原因 检查故障的产生是否具有普遍性,并尽可能的保证同类问题不在出现, 回顾故障的处理流程,并检查处理过程中所存在的问题.并确定此类 ...

随机推荐

  1. 从零开始的acm竞赛生涯

    经过了一段时间的训练,自己的成绩还是很不理想.回首过往,感觉自己还是练得太少,一直没有进入状态,缺乏硬怼出题的能力,思维也不够快,赛场上各种被卡题.可以说,我之前的训练有些仓促,还没有达到入门的水准, ...

  2. bzoj 1951 [Sdoi2010]古代猪文 ——数学综合

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1951 数学综合题. 费马小定理得指数可以%999911658,又发现这个数可以质因数分解.所 ...

  3. Asp.net工作流workflow实战之工作流启动与继续(三)

    工作流帮助类: //让工作流继续沿着书签的位置向下执行value是向书签传递参数 wfc.ResumeBookmark(bookmarkName,value); //把传过来的数据value作为输出参 ...

  4. 新建一个Model类的注意事项

    昨天在工作中新建了一个Model类在测试环境测试一点问题也没有,到了生产环境就报错了,由于调用的是分页类,报错说:在520行 _count() 函数不存在. 我的思路是:先到生产环境查看了具体的报错文 ...

  5. OpenWrt添加启动脚本

    1.在 /etc/init.d 目录下建立文件 vi silabs #!/bin/sh /etc/rc.common # Copyright (C) 2006 OpenWrt.org START=93 ...

  6. List转Datable(需区分对象充当List成员和数组充当List成员两种情况)

    对象充当List成员时: /// <summary> /// 将泛类型集合List类转换成DataTable /// </summary> /// <param name ...

  7. 2016.1.1 VS中宏的使用技巧点滴

    Dim selection As TextSelection = DTE.ActiveDocument.Selection'定义 TextSelection 对象 selection.StartOfL ...

  8. 第五章 JVM调优(待续)

    Java虚拟机内存模型 JVM内存分配参数 垃圾收集基础 常用调优案列和方法 实用JVM参数 实战JVM调优

  9. UnicodeDecodeError: 'ascii' codec can't decode byte 0xe5 in position 85

    UnicodeDecodeError: 'ascii' codec can't decode byte 0xe5 in position 85;import sys reload(sys) sys.s ...

  10. windows cmd for paramiko

    wmic cpu get LoadPercentage wmic memphysical list brief wmic memphysical  get MaxCapacity   主板芯片组支持最 ...