ACM学习历程—HDU 3949 XOR(xor高斯消元)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3949
题目大意是给n个数,然后随便取几个数求xor和,求第k小的。(重复不计算)
首先想把所有xor的值都求出来,对于这个规模的n是不可行的。
然后之前有过类似的题,求最大的,有一种方法用到了线性基。
那么线性基能不能表示第k大的呢?
显然,因为线性基可以不重复的表示所有结果。它和原数组是等价的。
对于一个满秩矩阵
100000
010000
001000
000100
000010
000001
可以看出来最小的就是1,次小的是2,后面以此就是3,4,5,6....2^6-1.
可以看出来,每个向量基,都有取或者不取两种选择,而且把k二进制拆开来后,第i位就表示第i小的向量基取不取(1取,0不取)。
因为保证了第k大的基总大于比他小的基的线性组合。
此外,需要对非满秩的矩阵进行特判。因为其存在0的结果,如果要求最小,那么就是0。如果不是,那么就是求当前矩阵下的第(k-1)小。
然后接下来求的时候,需要对不存在的情况特判,因为每个数都有取或不取,即2^row-1种,除去全不取的情况。
代码:
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <set>
#include <map>
#include <queue>
#include <string>
#define LL long long using namespace std; //xor高斯消元求线性基
//时间复杂度O(63n)
const int maxN = ;
LL a[maxN];
int n; int xorGauss(int n)//可以用来解模二的方程,加快速度
{
int row = ;
for (int i = ; i >= ; i--)
{
int j;
for (j = row; j < n; j++)
if(a[j]&((LL)<<i))
break;
if (j != n)
{
swap(a[row], a[j]);
for (j = ; j < n; j++)
{
if(j == row) continue;
if(a[j]&((LL)<<i))
a[j] ^= a[row];
}
row++;
}
}
return row;
} void input()
{
scanf("%d", &n);
for (int i = ; i < n; ++i)
scanf("%I64d", &a[i]);
} LL findK(int row, int k)
{
if (row < n)
{
if (k == )
return ;
else k--;
}
if (k >= (LL)<<row)
return -;
LL ans = ;
for (int i = ; i < ; i++)
{
if (k&((LL)<<i))
ans ^= a[row-i-];
}
return ans;
} void work()
{
int row, q;
LL k, ans;
row = xorGauss(n);
scanf("%d", &q);
for (int i = ; i < q; ++i)
{
scanf("%I64d", &k);
ans = findK(row, k);
printf("%I64d\n", ans);
}
} int main()
{
//freopen("test.in", "r", stdin);
int T;
scanf("%d", &T);
for (int times = ; times < T; ++times)
{
printf("Case #%d:\n", times+);
input();
work();
}
}
ACM学习历程—HDU 3949 XOR(xor高斯消元)的更多相关文章
- [hdu 3949]线性基+高斯消元
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3949 一开始给做出来的线性基wa了很久,最后加了一步高斯消元就过了. 之所以可以这样做,证明如下. 首 ...
- ACM学习历程—HDU 3915 Game(Nim博弈 && xor高斯消元)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3915 题目大意是给了n个堆,然后去掉一些堆,使得先手变成必败局势. 首先这是个Nim博弈,必败局势是所 ...
- ACM学习历程—SGU 275 To xor or not to xor(xor高斯消元)
题目链接:http://acm.sgu.ru/problem.php?contest=0&problem=275 这是一道xor高斯消元. 题目大意是给了n个数,然后任取几个数,让他们xor和 ...
- HDU 3949 XOR(高斯消元搞基)
HDU 3949 XOR pid=3949" target="_blank" style="">题目链接 题意:给定一些数字,问任取几个异或值第 ...
- HDU 3949 XOR(高斯消元)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3949 题意:给出一个长度为n的数列A.选出A的所有子集(除空集外)进行抑或得到2^n-1个数字,去重排 ...
- HDU 3949:XOR(高斯消元+线性基)
题目链接 题意 给出n个数,问这些数的某些数xor后第k小的是谁. 思路 高斯消元求线性基. 学习地址 把每个数都拆成二进制,然后进行高斯消元,如果这个数字这一位(列)有1,那么让其他数都去异或它,消 ...
- BZOJ 2115 Wc2011 Xor DFS+高斯消元
标题效果:鉴于无向图.右侧的每个边缘,求一个1至n路径,右上路径值XOR和最大 首先,一个XOR并能为一个路径1至n简单的路径和一些简单的XOR和环 我们开始DFS获得随机的1至n简单的路径和绘图环所 ...
- [ACM] hdu 4418 Time travel (高斯消元求期望)
Time travel Problem Description Agent K is one of the greatest agents in a secret organization calle ...
- SGU 275 To xor or not to xor (高斯消元)
题目链接 题意:有n个数,范围是[0, 10^18],n最大为100,找出若干个数使它们异或的值最大并输出这个最大值. 分析: 一道高斯消元的好题/ 我们把每个数用二进制表示,要使得最后的异或值最大, ...
随机推荐
- EasyDSS直播服务器如何帮助用户解决OBS不能同时同步输出多路直播流到直播平台、CDN平台的限制
最近有用户突然寻求帮助,大概的意思就是说: 他需要同步将桌面的直播同时RTMP发布到:斗鱼.熊猫TV等等多个平台,但是OBS又只能同时采集并发布推流直播到单一个平台,而且有时候在4G或者网络比较差的情 ...
- node.js实现国标GB28181流媒体点播(即实时预览)服务解决方案
背景 28181协议全称为GB/T28181<安全防范视频监控联网系统信息传输.交换.控制技术要求>,是由公安部科技信息化局提出,由全国安全防范报警系统标准化技术委员会(SAC/TC100 ...
- fedora找开ftpd服务器并以root登陆
工作原因需要在federal中弄个vsftpd再用root去登陆(我知道这样不太安全) 确认系统的版本 [root@localhost ~]# uname -a Linux localhost.loc ...
- 九度OJ 1337:寻找最长合法括号序列 (DP)
时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:839 解决:179 题目描述: 给你一个长度为N的,由'('和')'组成的括号序列,你能找出这个序列中最长的合法括号子序列么?合法括号序列的 ...
- 九度OJ刷题报告
从8月初到现在,已经刷了400道题,越到后面题目越难,但仍会继续努力. 现将自己所AC的代码贴到博客上整理,同时供大家交流参考. 所有代码均为本人独立完成,全部采用C语言进行编写.
- is assembler instruction and machine instuction atomic
1 assembler instruction depends,有的汇编指令会被assemble成多条机器指令. 2 机器指令 depends,有的机器指令也不是atomic的. 所以,不要希望在单条 ...
- 【译】快速高效学习Java编程在线资源Top 20
想要加强你的编程能力吗?想要提升你的 Java 编程技巧和效率吗? 不用担心.本文将会提供快速高效学习 Java 编程的 50 多个网站资源: 开始探索吧: 1.MKyong:许多开发者在这里可以找到 ...
- linux c编程:进程控制(一)
一个进程,包括代码.数据和分配给进程的资源.fork()函数通过系统调用创建一个与原来进程几乎完全相同的进程, 也就是两个进程可以做完全相同的事,但如果初始参数或者传入的变量不同,两个进程也可以做不同 ...
- Blobstore Java API overview
Blobstore API允许你的应用程序使用(serve)叫做Blobs的数据对象.这种数据对象比Datastore服务所允许的对象的尺寸大得多.Blobs能有效地为大文件比如视频.图片提供服务,允 ...
- weak 的内部实现原理
问题 weak 变量在引用计数为0时,会被自动设置成 nil,这个特性是如何实现的? 答案 在 Friday QA 上,有一期专门介绍 weak 的实现原理.https://mikeash.com/p ...