codeforces757E. Bash Plays with Functions(狄利克雷卷积 积性函数)
http://codeforces.com/contest/757/problem/E
题意

Sol
非常骚的一道题
首先把给的式子化一下,设$u = d$,那么$v = n / d$
$$f_r(n) = \sum_{d \mid n} \frac{f_{r - 1}(d) + f_{r - 1}(\frac{n}{d})}{2}$$
$$= \sum_{d\mid n} f_{r - 1}(d)$$
很显然,这是$f_r(n)$与$1$的狄利克雷卷积
根据归纳法可以证明$f_r(n)$为积性函数
我们可以对每个质因子分别考虑他们的贡献
考虑$f_0(p^k) = [k =0]+1$,与$p$是无关的,因此我们只要枚举$r$和$k$就好
$f_r(p^k) = \sum_{i = 0}^k f_{r - 1}(p^i)$
前缀和优化dp
#include<cstdio>
#include<cmath>
#define LL long long
using namespace std;
const int MAXN = 1e6 + , INF = 1e9 + , mod = 1e9 + ;
inline int read() {
char c = getchar(); int x = , f = ;
while(c < '' || c > '') {if(c == '-') f = -; c = getchar();}
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * f;
}
int prime[MAXN], tot, vis[MAXN];
LL f[MAXN][];
void GetPrime(int N) {
for(int i = ; i <= N; i++) {
if(!vis[i]) prime[++tot] = i;
for(int j = ; j <= N && i * prime[j] <= N; j++) {
vis[i * prime[j]] = ;
if(i % prime[j] == ) break;
}
}
}
void Pre(int N, int M) {
f[][] = ;//f[i][k] f_r(p^k)
for(int i = ; i <= M; i++) f[][i] = ;
for(int r = ; r <= N; r++) {
LL sum = ;
for(int k = ; k <= M; k++) {
sum += f[r - ][k];
(f[r][k] += sum ) %= mod;
}
}
}
main() {
GetPrime(1e6 + );
Pre(1e6 + , );
int Q = read();
while(Q--) {
int r = read(), n = read();
LL ans = ;
for(int i = ; i <= tot && prime[i] <= sqrt(n); i++) {
if(n % prime[i]) continue;
int num = ;
while(!(n % prime[i])) num++, n /= prime[i];
ans = 1ll * ans * (f[r][num]) % mod;
}
if(n > ) ans = (1ll * ans * f[r][]) % mod;
printf("%I64d\n", ans);
}
}
/* */
codeforces757E. Bash Plays with Functions(狄利克雷卷积 积性函数)的更多相关文章
- Bash Plays with Functions CodeForces - 757E (积性函数dp)
大意: 定义函数$f_r(n)$, $f_0(n)$为pq=n且gcd(p,q)=1的有序对(p,q)个数. $r \ge 1$时, $f_r(n)=\sum\limits_{uv=n}\frac{f ...
- Codeforces757E.Bash Plays With Functions(积性函数 DP)
题目链接 \(Description\) q次询问,每次给定r,n,求\(F_r(n)\). \[ f_0(n)=\sum_{u\times v=n}[(u,v)=1]\\ f_{r+1}(n)=\s ...
- Codeforces E. Bash Plays with Functions(积性函数DP)
链接 codeforces 题解 结论:\(f_0(n)=2^{n的质因子个数}\)= 根据性质可知\(f_0()\)是一个积性函数 对于\(f_{r+1}()\)化一下式子 对于 \[f_{r+1} ...
- CF 757 E Bash Plays with Functions —— 积性函数与质因数分解
题目:http://codeforces.com/contest/757/problem/E 首先,f0(n)=2m,其中 m 是 n 的质因数的种类数: 而且 因为这个函数和1卷积,所以是一个积性函 ...
- Codeforces 757 E Bash Plays with Functions
Discription Bash got tired on his journey to become the greatest Pokemon master. So he decides to ta ...
- CF757E Bash Plays with Functions
题解 q<=1e6,询问非常多.而n,r也很大,必须要预处理所有的答案,询问的时候,能比较快速地查询. 离线也是没有什么意义的,因为必须递推. 先翻译$f_0(n)$ $f_0(n)=\sum_ ...
- Master of Phi (欧拉函数 + 积性函数的性质 + 狄利克雷卷积)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6265 题目大意:首先T是测试组数,n代表当前这个数的因子的种类,然后接下来的p和q,代表当前这个数的因 ...
- 【codeforces 757E】Bash Plays with Functions
[题目链接]:http://codeforces.com/problemset/problem/757/E [题意] 给你q个询问; 每个询问包含r和n; 让你输出f[r][n]; 这里f[0][n] ...
- [Codeforces 757E] Bash Plays with Functions (数论)
题目链接: http://codeforces.com/contest/757/problem/E?csrf_token=f6c272cce871728ac1c239c34006ae90 题目: 题解 ...
随机推荐
- OpenStack概念
OpenStack is a global collaboration ofdevelopers and cloud computing technologists producing the ubi ...
- Kudu compaction design
不多说,直接上干货! http://blog.csdn.net/lookqlp/article/details/51438109
- jQuery学习心得
表示在document.ready时执行代码 $(function(){ //1.取得要操作的对象(尽量只限制范围),如果对象多次使用要记得缓存 var $selector = $('selector ...
- linux下文件比对功能
很想对吧两个文本有什么不同,可linux下有没有那么方便的工具,怎么办?其实也很简单:diff命令,一行搞定. 新建a.txt文件
- Spring boot-(3) Spring Boot特性1
本节将深入Spring Boot的细节,可以学到你想使用的或定制的Spring Boot的主要特性. 1. SpringApplication SpringApplication类为引导一个Sprin ...
- net 总数据中取随机几条数据
List<string> lstSample = new List<string>(); Random rand = new Random(); List<int> ...
- golang中并发的相关知识
golang中done channel理解:https://segmentfault.com/a/1190000006261218 golang并发模型之使用Context:https://segme ...
- app启动黑屏
由于在手机上多次删除应用,导致加载app时加载缓存图片缺失,进行如下操作: 删除Xcode DerivedData目录释放空间: 1.首先切换到 Finder 程序,打开“前往”菜单. 2.然后按住 ...
- 单元测试模拟request后台
编写测试单元 @RunWith(SpringJUnit4ClassRunner.class) 让测试运行于Spring测试环境 @WebAppConfiguration是一个类级别的注释,用于声明Ap ...
- css3之图形绘制
由于近期的项目中出现了不规则的边框和图形, 所以重新温习一下CSS3的图形绘制...样式绘制的图形比图片的性能要好,体验更佳,关键一点是更加有趣! 以下几个例子主要是运用了css3中border.bo ...