hdu 5139(离线处理+离散化下标)
Formula
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 1204 Accepted Submission(s): 415
You are expected to write a program to calculate f(n) when a certain n is given.
Please process to the end of file.
[Technical Specification]
1≤n≤10000000
100
148277692
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include <queue>
using namespace std;
typedef long long LL;
const LL mod = ;
struct Ask
{
LL v;
int ori;
} ask[];
LL a[];
int cmp(Ask a,Ask b){
return a.v<b.v;
}
int main()
{
int n,id=;
ask[].v = ask[].ori = ;
while(scanf("%d",&n)!=EOF)
{
ask[id].v = n;
ask[id].ori = id;
id++;
}
sort(ask+,ask+id,cmp);
for(int i=;i<id;i++){
a[ask[i].ori] = i;
}
LL cnt = ,ans=;
for(int i=; i<id; i++)
{
for(int j=ask[i-].v+; j<=ask[i].v; j++)
{
cnt = cnt*j%mod;
ans = ans*cnt%mod;
}
a[ask[i].ori] = ans;
}
for(int i=;i<id;i++){
printf("%lld\n",a[i]);
}
}
hdu 5139(离线处理+离散化下标)的更多相关文章
- HDU 5862 Counting Intersections(离散化+树状数组)
HDU 5862 Counting Intersections(离散化+树状数组) 题目链接http://acm.split.hdu.edu.cn/showproblem.php?pid=5862 D ...
- hdu 4288 离线线段树+间隔求和
Coder Time Limit: 20000/10000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Su ...
- hdu 3436 splay树+离散化*
Queue-jumpers Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) To ...
- HDU 4417 - Super Mario ( 划分树+二分 / 树状数组+离线处理+离散化)
题意:给一个数组,每次询问输出在区间[L,R]之间小于H的数字的个数. 此题可以使用划分树在线解决. 划分树可以快速查询区间第K小个数字.逆向思考,判断小于H的最大的一个数字是区间第几小数,即是答案. ...
- HDU 4288 Coder 【线段树+离线处理+离散化】
题意略. 离线处理,离散化.然后就是简单的线段树了.需要根据mod 5的值来维护.具体看代码了. /* 线段树+离散化+离线处理 */ #include <cstdio> #include ...
- hdu 4995(离散化下标+模拟)
Revenge of kNN Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)To ...
- HDU 5139 Formula --离线处理
题意就不说了,求公式. 解法: 稍加推导能够得出 : f(n) = n! * f(n-1) , 即其实是求: ∏(n!) ,盲目地存下来是不行的,这时候看见条件: 数据组数 <= 100000 ...
- HDU 5139数据离线处理
此题可以找到规律f(n) = 1! * 2! *...*n!, 如果直接打表的话,由于n比较大(10000000),所以会超内存,这时候就要用到离线处理数据,就是先把数据存起来,到最后在暴力一遍求解就 ...
- 利用id来进行树状数组,而不是离散化以后的val HDU 4417 离线+树状数组
题目大意:给你一个长度为n的数组,问[L,R]之间<=val的个数 思路:就像标题说的那样就行了.树状数组不一定是离散化以后的区间,而可以是id //看看会不会爆int!数组会不会少了一维! / ...
随机推荐
- WCF入门二[WCF的配置文件]
一.概述 往往在很多项目中数据库连接字符串.变量和一些动态的加载类会写在配置文件中.WCF也会在配置文件中写入一些配置参数,比如服务的地址.服务用于发送和接收消息的传输和消息编码等,通过配置文件可以灵 ...
- svn git 导入本地文件到远程服务器 import
以前,想要把本地的一个文件上传到svn 或者git 服务器的时候,都要先把服务器上的文件夹down 下来,然后把要添加的文件添加进去,然后提交. 想想都麻烦. 现在我们用import 命令就可以做到, ...
- 您的手机上未安装应用程序 android 点击快捷方式提示未安装程序的解决
最近APP出现一个很奇怪的问题,在Android 4.4.2和android 4.4.3系统上点击应用的快捷方式,打不开应用,而且会提示未安装程序. 确认了应用的MainActivity中设置了and ...
- Python语法之com[1][:-7]
strCom = com[0] + ": " + com[1][:-7] 如上应该是一个字符串合成,最后的[1][:-7],我理解是去除com[1]的最后7个字符. 比如com[0 ...
- 《Cracking the Coding Interview》——第9章:递归和动态规划——题目10
2014-03-20 04:15 题目:你有n个盒子,用这n个盒子堆成一个塔,要求下面的盒子必须在长宽高上都严格大于上面的.如果你不能旋转盒子变换长宽高,这座塔最高能堆多高? 解法:首先将n个盒子按照 ...
- DOS程序员手册(一)
当今MS-Windows横扫大江南北,让我们这就来研究一下它的祖宗——MS-DOS! 这本书很难得,希望读者好好学习! DOS程序员手册(一) DOS教程 (以下内容全部为原作者的阐述,照样保留) 这 ...
- 《算法》C++代码 SPFA
SPFA的全称是Shortest Path Faster Algorithm,一看名称八成就是中国人起的名字,因为外国人起算法名称一般都会写上自己的名字,很少谦虚.实际上,这是西南交通大学段凡丁同学于 ...
- PICT:基于正交法的软件测试用例生成工具
成对组合覆盖这一概念是Mandl于1985年在测试Aad编译程序时提出来的.Cohen等人应用成对组合覆盖测试技术对Unix中的“Sort”命令进行了测试.测试结果表明覆盖率高达90%以上.可见成对组 ...
- Python 3基础教程11-如何利用pip命令安装包和模块
本文介绍如何利用pip命令安装Python相关的包和模块.在Python中有些方法或者模块是自带的功能,也叫(build-in),内构函数,实际使用,可能内构函数或者模块不能完成我们的任务,我们就需要 ...
- TensorFlow——深度学习笔记
深度学习与传统机器学习的区别 传统机器学习输入的特征为人工提取的特征,例如人的身高.体重等,深度学习则不然,它接收的是基础特征,例如图片像素等,通过多层复杂特征提取获得. 深度学习.人工智能.机器学习 ...