F. Gourmet and Banquet(贪心加二分求值)
题目链接:http://codeforces.com/problemset/problem/589/F
A gourmet came into the banquet hall, where the cooks suggested n dishes for guests. The gourmet knows the schedule: when each of the dishes will be served.
For i-th of the dishes he knows two integer moments in time ai and bi (in seconds from the beginning of the banquet) — when the cooks will bring the i-th dish into the hall and when they will carry it out (ai < bi). For example, if ai = 10 and bi = 11, then the i-th dish is available for eating during one second.
The dishes come in very large quantities, so it is guaranteed that as long as the dish is available for eating (i. e. while it is in the hall) it cannot run out.
The gourmet wants to try each of the n dishes and not to offend any of the cooks. Because of that the gourmet wants to eat each of the dishes for the same amount of time. During eating the gourmet can instantly switch between the dishes. Switching between dishes is allowed for him only at integer moments in time. The gourmet can eat no more than one dish simultaneously. It is allowed to return to a dish after eating any other dishes.
The gourmet wants to eat as long as possible on the banquet without violating any conditions described above. Can you help him and find out the maximum total time he can eat the dishes on the banquet?
Input
The first line of input contains an integer n (1 ≤ n ≤ 100) — the number of dishes on the banquet.
The following n lines contain information about availability of the dishes. The i-th line contains two integers ai and bi (0 ≤ ai < bi ≤ 10000) — the moments in time when the i-th dish becomes available for eating and when the i-th dish is taken away from the hall.
Output
Output should contain the only integer — the maximum total time the gourmet can eat the dishes on the banquet.
The gourmet can instantly switch between the dishes but only at integer moments in time. It is allowed to return to a dish after eating any other dishes. Also in every moment in time he can eat no more than one dish.
Examples
3
2 4
1 5
6 9
6
3
1 2
1 2
1 2
0
Note
In the first example the gourmet eats the second dish for one second (from the moment in time 1 to the moment in time 2), then he eats the first dish for two seconds (from 2 to 4), then he returns to the second dish for one second (from 4 to 5). After that he eats the third dish for two seconds (from 6 to 8).
In the second example the gourmet cannot eat each dish for at least one second because there are three dishes but they are available for only one second (from 1 to 2).
题目大意:输入n,代表有n种菜,下面n行代表每种菜上来的时间和下去的时间,要求你每道菜吃的时间一样多,问你最多可以吃多少多久,每一秒只能吃一道菜
思路:并不是自己的思路,自己不知道怎么贪心,大概猜出来是二分求值。。。 贪心的思想是按照每一道菜的端下去的时间从小到大排序,然后从前往后选择就行。。。这是为何呢?
因为我们要做的就是让选择的这道菜对其他菜影响最可能的少,然后我们按照端下去的时间排序,证明我们当前吃的菜端下去的时间是在其他菜端下去之前的,那么我们从前往后找时间是不是对其他菜影响最小呢? 当然是,接下来就看代码了
#include<iostream>
#include<string.h>
#include<map>
#include<cstdio>
#include<cstring>
#include<stdio.h>
#include<cmath>
#include<math.h>
#include<algorithm>
#include<set>
#include<queue>
typedef long long ll;
using namespace std;
const ll mod=1e9+;
const int maxn=1e2+;
const int maxk=1e4+;
const int maxx=1e4+;
const ll maxe=+;
#define INF 0x3f3f3f3f3f3f
#define Lson l,mid,rt<<1
#define Rson mid+1,r,rt<<1|1]
bool vis[maxk];
int n;
struct dish
{
int be,en;
}d[maxn];
bool cmp(const dish a,const dish b)
{
return a.en<b.en;
}
bool solve(int mid)
{
for(int i=;i<n;i++)
{
int sum=;
for(int j=d[i].be;j<d[i].en;j++)
{
if(!vis[j])
{
vis[j]=true;
sum++;
}
if(sum>=mid) break;
}
if(sum<mid)
return false;
}
return true;
}
int main()
{
memset(vis,false,sizeof(vis));
int mi=maxk;
cin>>n;
for(int i=;i<n;i++)
{
cin>>d[i].be>>d[i].en;
mi=min(abs(d[i].en-d[i].be),mi);
}
sort(d,d+n,cmp);
int l=,r=mi,mid=mi,ans=mid;
while(l<=r)
{
memset(vis,false,sizeof(vis));
if(solve(mid))
{
l=mid+;
ans=mid;
}
else
r=mid-;
mid=(l+r)/;
}
cout<<ans*n<<endl;
return ;
}
F. Gourmet and Banquet(贪心加二分求值)的更多相关文章
- Luogu2869 [USACO07DEC]美食的食草动物Gourmet Grazers (贪心,二分,数据结构优化)
贪心 考场上因无优化与卡常T掉的\(n \log(n)\) //#include <iostream> #include <cstdio> #include <cstri ...
- 【CodeForces 589F】Gourmet and Banquet(二分+贪心或网络流)
F. Gourmet and Banquet time limit per test 2 seconds memory limit per test 512 megabytes input stand ...
- BZOJ3527 推出卷积公式FFT求值
BZOJ3527 推出卷积公式FFT求值 传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=3527 题意: \(F_{j}=\sum_{i&l ...
- hdu 3641 数论 二分求符合条件的最小值数学杂题
http://acm.hdu.edu.cn/showproblem.php?pid=3641 学到: 1.二分求符合条件的最小值 /*================================= ...
- 九度OJ 1085 求root(N, k) -- 二分求幂及快速幂取模
题目地址:http://ac.jobdu.com/problem.php?pid=1085 题目描述: N<k时,root(N,k) = N,否则,root(N,k) = root(N',k). ...
- hdu5256 二分求LIS+思维
解题的思路很巧,为了让每个数之间都留出对应的上升空间,使a[i]=a[i]-i,然后再求LIS 另外二分求LIS是比较快的 #include<bits/stdc++.h> #define ...
- 二分求幂/快速幂取模运算——root(N,k)
二分求幂 int getMi(int a,int b) { ; ) { //当二进制位k位为1时,需要累乘a的2^k次方,然后用ans保存 == ) { ans *= a; } a *= a; b / ...
- 二分求幂,快速求解a的b次幂
一个引子 如何求得a的b次幂呢,那还不简单,一个for循环就可以实现! void main(void) { int a, b; ; cin >> a >> b; ; i < ...
- nyoj 409——郁闷的C小加(三)——————【中缀式化前缀后缀并求值】
郁闷的C小加(三) 时间限制:1000 ms | 内存限制:65535 KB 难度:4 描述 聪明的你帮助C小加解决了中缀表达式到后缀表达式的转换(详情请参考“郁闷的C小加(一)”),C小加很 ...
随机推荐
- Qt安装与配置
安装Qt 安装Qt Creator,打开终端执行如下命令: sudo apt-get install qt5-default qtcreator -y 安装Qt示例和文档: sudo apt-get ...
- Java常见设计模式之适配器模式
在阎宏博士的<JAVA与模式>一书中开头是这样描述适配器(Adapter)模式的: 适配器模式把一个类的接口变换成客户端所期待的另一种接口,从而使原本因接口不匹配而无法在一起工作的两个类能 ...
- WPF bmp和二进制转换
bmp转二进制: FileStream fs = File.OpenRead(filepath); //filepath文件路径 Byte[] tempBuff = new Byte[fs.Lengt ...
- Jumony.Core非常厉害的一个开源项目!
简单的说,就是解析html文档的,以前发送一个get请求获取一个页面的html文本后,想要获取里面的数据都是使用正则表达式.(非常的苦逼), 现在用这个获取就very easy! 安装的话在Nu Ge ...
- JavaScript代码存在形式
<!-- 方式一 --> <script type"text/javascript" src="JS文件"></script> ...
- UE mac版16.10.0.22破解
http://bbs.feng.com/read-htm-tid-10828753.html 去官网下载原载,先运行一次,再在终端里执行下面代码就可以破解完成! printf '\x31\xC0\xF ...
- 杭电acm 1033题
Problem Description For products that are wrapped in small packings it is necessary that the sheet o ...
- 1、perl学习
1.字符串函数 print chomp chop length uc lc index ord #转符号为ASCII的数字 chr #转数字为ASCII的字母 substr($string,offse ...
- Luogu 3312 [SDOI2014]数表
在这一篇里把所有的套路写全方便自己之后复习. 首先是一个小学生数学:$a$整除$b$ $ = $ $\frac{b}{a}$ 也就是说这题中格子$(i, j)$的值就是既能被$i$整除又能被$j$整 ...
- sublime text 3如何安装插件和设置字号
使用ctrl + ~(这个符号是键盘上1前面那个),如果不能调用出就需要修改快捷键,在Preferences ->Key Bindings - Default打开文件后,大概在248行,这里我修 ...