基站选址(base.c/cpp/pas)

题目描述 

N个村庄坐落在一条直线上,第i(i>1)个村庄距离第1个村庄的距离为Di。需要在这些村庄中建立不超过K个通讯基站,在第i个村庄建立基站的费用为Ci。如果在距离第i个村庄不超过Si的范围内建立了一个通讯基站,那么就成它被覆盖了。如果第i个村庄没有被覆盖,则需要向他们补偿,费用为Wi。现在的问题是,选择基站的位置,使得总费用最小。

输入

输入文件的第一行包含两个整数N,K,含义如上所述。

第二行包含N-1个整数,分别表示D2,D3,…,DN ,这N-1个数是递增的。

第三行包含N个整数,表示C1,C2,…CN

第四行包含N个整数,表示S1,S2,…,SN

第五行包含N个整数,表示W1,W2,…,WN

输出

输出文件中仅包含一个整数,表示最小的总费用。

样例输入


1 2
2 3 2
1 1 0
10 20 30

样例输出

4

提示

40%的数据中,N<=500;

100%的数据中,K<=NK<=100,N<=20,000,Di<=1000000000,Ci<=10000,Si<=1000000000,Wi<=10000。

solution

先列出DP式

f[i][j]表示当前建到i(i必建),已经建了j个的最小代价

f[i][j]=f[k][j-1]+cost(k+1,i-1)+c[i];

效率O(n^3)

因为j只和j-1有关,我们可以先枚举j,对于每一个j,考虑优化cost(k+1,i-1):

令l[i]为最左的能覆盖i的基站的位置,r[i]同理

用线段树存1~i-1  f[k][j-1]+cost(k+1,i-1 ) 的值

处理完i,将要加入i+1时对于r[x]=i的点显然无法被从右边覆盖,那么将1~l[x]-1加上w[x],

也就是如果f[i+1]由f[k]转移来,且k<l[x],那么x就不会被覆盖了,cost要加上w[x].

线段树维护区间加,单点查

效率O(nlogn)

#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<string>
#include<algorithm>
#include<map>
#include<queue>
#define maxn 200005
#define inf 900000000
using namespace std;
int n,k,dp[maxn],d[maxn],c[maxn],s[maxn],w[maxn],lm[maxn],rm[maxn];
int x,tot,head[maxn];
struct node{
int nex,v;
}e[maxn*2];
struct no
{
int l,r,x,bj;
}tree[maxn*4];
void lj(int t1,int t2)
{
e[++tot].v=t2;e[tot].nex=head[t1];head[t1]=tot;
}
void get(int k)
{
int l=1,r=k;
x=d[k];
while(l<r)
{
int mid=(l+r)/2;
if(x-d[mid]<=s[k])r=mid;
else l=mid+1;
}
lm[k]=l;
l=k,r=n;
while(l<r)
{
int mid=(l+r+1)/2;
if(d[mid]-x<=s[k])l=mid;
else r=mid-1;
}
rm[k]=l;
lj(l,k);
}
void wh(int k)
{
tree[k].x=min(tree[k*2].x,tree[k*2+1].x);
}
void build(int k,int L,int R)
{
tree[k].l=L,tree[k].r=R;tree[k].bj=0;
if(L==R){
tree[k].x=dp[L];
return;
}
int mid=(L+R)/2;
build(k*2,L,mid);build(k*2+1,mid+1,R);
wh(k);
}
void down(int k)
{
if(tree[k].bj>0)
{
tree[k*2].bj+=tree[k].bj;tree[k*2+1].bj+=tree[k].bj;
tree[k*2].x+=tree[k].bj;tree[k*2+1].x+=tree[k].bj;
tree[k].bj=0;
}
}
int ask(int k,int L,int R)
{
if(L>R)return 0;
down(k);
if(tree[k].l>=L&&tree[k].r<=R)
{
return tree[k].x;
}
int mid=(tree[k].l+tree[k].r)/2;
int u=inf;
if(L<=mid)u=min(u,ask(k*2,L,R));
if(R>mid)u=min(u,ask(k*2+1,L,R));
return u;
}
void lian(int k,int L,int R,int v)
{
if(L>R)return;
down(k);
if(tree[k].l>=L&&tree[k].r<=R)
{ tree[k].bj+=v;
tree[k].x+=v;
return;
}
int mid=(tree[k].l+tree[k].r)/2;
if(L<=mid)lian(k*2,L,R,v);
if(R>mid)lian(k*2+1,L,R,v);
wh(k);
}
int ss()
{
char ch;int v=0;
while(!isdigit(ch=getchar()));v=v+ch-'0';
while(isdigit(ch=getchar()))v=(v<<1)+(v<<3)+ch-'0';
return v;
}
int main()
{
n=ss();k=ss();
for(int i=2;i<=n;i++)d[i]=ss();
for(int i=1;i<=n;i++)c[i]=ss();
for(int i=1;i<=n;i++)s[i]=ss();
for(int i=1;i<=n;i++)w[i]=ss();
n++;d[n]=inf;
for(int i=1;i<=n;i++)get(i); int tmp=0;
for(int i=1;i<=n;i++){
dp[i]=tmp+c[i];
int p=head[i];
while(p!=0)
{
tmp+=w[e[p].v];
p=e[p].nex;
}
}
int ans=dp[n];
for(int i=2;i<=k+1;i++)
{
build(1,1,n);
for(int j=1;j<=n;j++){ dp[j]=ask(1,1,j-1)+c[j];
int p=head[j];
while(p!=0){
lian(1,1,lm[e[p].v]-1,w[e[p].v]);
p=e[p].nex;
}
}
ans=min(ans,dp[n]);
}
cout<<ans<<endl;
return 0;
}

基站选址(base.c/cpp/pas)的更多相关文章

  1. BZOJ 1835: [ZJOI2010]base 基站选址 [序列DP 线段树]

    1835: [ZJOI2010]base 基站选址 题目描述 有N个村庄坐落在一条直线上,第i(i>1)个村庄距离第1个村庄的距离为Di.需要在这些村庄中建立不超过K个通讯基站,在第i个村庄建立 ...

  2. 【BZOJ1835】[ZJOI2010]base 基站选址 线段树+DP

    [BZOJ1835][ZJOI2010]base 基站选址 Description 有N个村庄坐落在一条直线上,第i(i>1)个村庄距离第1个村庄的距离为Di.需要在这些村庄中建立不超过K个通讯 ...

  3. [ZJOI2010]基站选址,线段树优化DP

    G. base 基站选址 内存限制:128 MiB 时间限制:2000 ms 标准输入输出 题目类型:传统 评测方式:文本比较   题目描述 有N个村庄坐落在一条直线上,第i(i>1)个村庄距离 ...

  4. 【Bzoj 1835 基站选址】

    基站选址的区间里隐藏着DP优化的机密…… 分析:       不论是做过乘积最大还是石子合并,或者是其他的入门级别的区间DP题目的人呐,大米并认为读题后就能够轻松得出一个简洁明了的Dp转移方程.    ...

  5. 【题解】Luogu P2605 [ZJOI2010]基站选址

    原题传送门:P2604 [ZJOI2010]基站选址 看一眼题目,变知道这题一定是dp 设f[i][j]表示在第i个村庄修建第j个基站且不考虑i+1~n个村庄的最小费用 可以得出f[i][j] = M ...

  6. Problem B. Market(market.c/cpp/pas)

    Problem B. Market(market.c/cpp/pas)Time limit: 1 secondsMemory limit: 128 megabytes在比特镇一共有 n 家商店,编号依 ...

  7. 【BZOJ1835】基站选址(线段树)

    [BZOJ1835]基站选址(线段树) 题面 BZOJ 题解 考虑一个比较暴力的\(dp\) 设\(f[i][j]\)表示建了\(i\)个基站,最后一个的位置是\(j\)的最小代价 考虑如何转移\(f ...

  8. 公路建设 (highway.c/cpp/pas)

    2.公路建设 (highway.c/cpp/pas) 在滨海市一共有 n 个城市,编号依次为 1 到 n,它们之间计划修建 m 条双向道路,其中 修建第 i 条道路的费用为 ci. 海霸王作为滨海市公 ...

  9. 商店购物 (shopping.c/cpp/pas)

    1.商店购物 (shopping.c/cpp/pas) 在滨海市开着 n 家商店,编号依次为 1 到 n,其中编号为 1 到 m 的商店有日消费量上 限,第 i 家商店的日消费量上限为 wi. 海霸王 ...

随机推荐

  1. 没有CTO的Netflix有哪些值得我们学习的工程文化?

    作者介绍: 杨波,拍拍贷基础框架研发总监.具有超过 10 年的互联网分布式系统研发和架构经验,曾先后就职于:eBay 中国研发中心(eBay CDC),任资深研发工程师,参与亿贝开放 API 平台研发 ...

  2. JS - 简单的下载图片至本地

    <iframe id="saveImg" src="图片路径" style="display:none;"></ifram ...

  3. datatable 默认按某字段排序

    "columns": [ { data: null}, { data: 'name'}, { data: 'birthday'} ], "order": [[ ...

  4. .NET 客户IP地址捕捉

    MVC模式下要获取客户IP可以在ActionFilterAttribute中进行拦截 filterContext.HttpContext.Request.UserHostAddress 同样,在Web ...

  5. angularjs处理多个$http

    本文引自:https://www.cnblogs.com/xiaojikuaipao/p/6017899.html 在实际业务中经常需要等待几个请求完成后再进行下一步操作.但angularjs中$ht ...

  6. 完善压缩处理类(支持主流的图像类型(jpg、png、gif)

    <?php /* * 图像压缩 */ class Thumb { //成员属性 private $file; //原图文件 private $thumb_path; //压缩文本件保存的地址 / ...

  7. Codeforces Round #460 (Div. 2).E 费马小定理+中国剩余定理

    E. Congruence Equation time limit per test 3 seconds memory limit per test 256 megabytes input stand ...

  8. 2018Ec-Final比赛总结

    一场匆忙的旅程. NCC_9754_ Victory的最后一场比赛终究没能victory. 去的时候晕车到吐了两次,到宾馆吃完饭直接睡了,但还是两天都昏昏沉沉的头疼的厉害,第二天直接步行去了西工大体育 ...

  9. java.sql.SQLException: Field 'id' doesn't have a default value异常

    在做mybatis插入的时候报了这个错误,百度了下,貌似是因为这个健没有设置值且不是自增类型的. java.sql.SQLException: Field 'id' doesn't have a de ...

  10. laravel5.5门面

    Facades为应用程序的 服务容器 中可用的类提供了一个 静态接口 . 最直观的好处 就是需记住必须手动注入或配置的长长的类名.因此有人也理解Facades就是一个"快捷别名" ...