题目

给一棵树,每条边有权.求一条简单路径,权值和等于K,且边的数量最小.N <= 200000, K <= 1000000

输入格式

第一行 两个整数 n, k

第二..n行 每行三个整数 表示一条无向边的两端和权值 (注意点的编号从0开始)

输出格式

一个整数 表示最小边数量 如果不存在这样的路径 输出-1

输入样例

4 3

0 1 1

1 2 2

1 3 4

输出样例

2

提示

2018.1.3新加数据一组,未重测

题解

比较常规的点分治,然而我还是因为不熟练写漏一个判定T得停不下来QAQ

每次找重心,遍历子树维护H数组H[i]表示离根i距离经过的最少边,每次遍历完一个子树,先查询一遍H数组更新答案,再更新H数组,保证不会出现在同一个子树中的情况

遍历完之后,再遍历一遍,把H数组还原【别memset,会T,因为每一层的节点数是不同的,才使得复杂度降低为O(nlogn),而使用memset使得每一层操作都达到n】

之后往下找重心递归

搞完啦~~

#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
using namespace std;
const int maxn = 200005,maxm = 1000005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = (out << 3) + (out << 1) + c - '0'; c = getchar();}
return out * flag;
}
int N,K,h[maxn],ne = 2;
struct EDGE{int to,nxt,w;}ed[2 * maxn];
inline void build(int u,int v,int w){
ed[ne] = (EDGE){v,h[u],w}; h[u] = ne++;
ed[ne] = (EDGE){u,h[v],w}; h[v] = ne++;
}
int F[maxn],rt,Siz[maxn],vis[maxn],sum;
void getRT(int u,int fa){
Siz[u] = 1; F[u] = 0;
Redge(u) if (!vis[to = ed[k].to] && to != fa){
getRT(to,u);
Siz[u] += Siz[to];
F[u] = max(F[u],Siz[to]);
}
F[u] = max(F[u],sum - Siz[u]);
if (F[u] < F[rt]) rt = u;
}
int Dis[maxn],Len[maxn],di = 0,Hd[maxm],dis[maxn],dep[maxn],ansL = INF;
void cal(int u,int fa){
if (dis[u] > K) return;
Dis[++di] = dis[u]; Len[di] = dep[u];
Redge(u) if (!vis[to = ed[k].to] && to != fa){
dis[to] = dis[u] + ed[k].w;
dep[to] = dep[u] + 1;
cal(to,u);
}
}
void solve(int u){
vis[u] = true; Hd[0] = 0;
Redge(u) if (!vis[to = ed[k].to]){
di = 0; dis[to] = ed[k].w; dep[to] = 1;
cal(to,u);
REP(i,di) if (Hd[K - Dis[i]] + Len[i] < ansL)
ansL = Hd[K - Dis[i]] + Len[i];
REP(i,di) if (Hd[Dis[i]] > Len[i])
Hd[Dis[i]] = Len[i];
}
Redge(u) if (!vis[to = ed[k].to]){
di = 0; dis[to] = ed[k].w; dep[to] = 1;
cal(to,u);
REP(i,di) Hd[Dis[i]] = INF;
}
Hd[0] = INF;
Redge(u) if (!vis[to = ed[k].to]){
sum = Siz[to]; F[rt = 0] = INF;
getRT(to,u);
solve(rt);
}
}
int main(){
//freopen("in.txt","r",stdin);
//freopen("out1.txt","w",stdout);
N = read(); K = read(); int u,v,w;
for (int i = 0; i < maxm; i++) Hd[i] = INF;
REP(i,N - 1) u = read() + 1,v = read() + 1,w = read(),build(u,v,w);
F[rt = 0] = INF; sum = N;
getRT(1,0);
solve(rt);
if (ansL == INF) printf("-1\n");
else printf("%d\n",ansL);
return 0;
}

BZOJ2599 [IOI2011]Race 【点分治】的更多相关文章

  1. [bzoj2599][IOI2011]Race——点分治

    Brief Description 给定一棵带权树,你需要找到一个点对,他们之间的距离为k,且路径中间的边的个数最少. Algorithm Analyse 我们考虑点分治. 对于子树,我们递归处理,所 ...

  2. BZOJ2599:[IOI2011]Race(点分治)

    Description 给一棵树,每条边有权.求一条简单路径,权值和等于K,且边的数量最小.N <= 200000, K <= 1000000 Input 第一行 两个整数 n, k 第二 ...

  3. 【BZOJ-2599】Race 点分治

    2599: [IOI2011]Race Time Limit: 70 Sec  Memory Limit: 128 MBSubmit: 2590  Solved: 769[Submit][Status ...

  4. BZOJ 2599: [IOI2011]Race( 点分治 )

    数据范围是N:20w, K100w. 点分治, 我们只需考虑经过当前树根的方案. K最大只有100w, 直接开个数组CNT[x]表示与当前树根距离为x的最少边数, 然后就可以对根的子树依次dfs并更新 ...

  5. [IOI2011]Race 点分治

    [IOI2011]Race LG传送门 点分治板子题. 直接点分治统计,统计的时候开个桶维护下就好了. 注(tiao)意(le)细(hen)节(jiu). #include<cstdio> ...

  6. bzoj2599: [IOI2011]Race(点分治)

    写了四五道点分治的题目了,算是比较理解点分治是什么东西了吧= = 点分治主要用来解决点对之间的问题的,比如距离为不大于K的点有多少对. 这道题要求距离等于K的点对中连接两点的最小边数. 那么其实道理是 ...

  7. [luogu4149][bzoj2599][IOI2011]Race【点分治】

    题目描述 给一棵树,每条边有权.求一条简单路径,权值和等于 K,且边的数量最小. 题解 比较明显需要用到点分治,我们定义\(d\)数组表示当前节点到根节点\(rt\)之间有多少个节点,也可以表示有多少 ...

  8. bzoj2599/luogu4149 [IOI2011]Race (点分治)

    点分治.WA了一万年. 重点就是统计答案的方法 做法一(洛谷AC bzojWA 自测WA): 做点x时记到x距离为k的边数最小值为dis[k],然后对每一对有值的dis[i]和dis[K-i],给an ...

  9. 2019.01.09 bzoj2599: [IOI2011]Race(点分治)

    传送门 题意:给一棵树,每条边有权.求一条路径,权值和等于K,且边的数量最小. 思路: 考虑点分治如何合并. 我们利用树形dpdpdp求树的直径的方法,边dfsdfsdfs子树边统计答案即可. 代码: ...

随机推荐

  1. P3366 最小生成树【模板+Kruscal讲解】

    此题数组大小非常重要 算法过程: 现将全部边按照权值(由小到大)排序. 按顺序(同上)考虑每条边,只要这条边和之前已选择的边不构成圈,就保留这条边,否则放弃这条边. 具体算法 成功选择(n-1)条边后 ...

  2. lintcode_115_不同的路径 II

    不同的路径 II   描述 笔记 数据 评测 "不同的路径" 的跟进问题: 现在考虑网格中有障碍物,那样将会有多少条不同的路径? 网格中的障碍和空位置分别用 1 和 0 来表示. ...

  3. centos下LVM配置与管理

    centos下LVM配置与管理 LVM是逻辑盘卷管理(Logical Volume Manager)的简称,它是Linux环境下对磁盘分区进行管理的一种机制,LVM是建立在硬盘和分区之上的一个逻辑层, ...

  4. JAVA / MySql 编程—— 第四章 高级查询(二)

    1.        EXISTS和NOT EXISTS子查询:EXISTS关键字用来检测数数据库对象是否存在.                  ★EXISTS和NOT EXISTS的结果只取决于是否 ...

  5. python__基础 : 类的__new__方法与实现一个单例

    __new__ : 这个方法的作用主要是创建一个实例,在创建实例时首先会调用 __new__方法 ,然后调用__init__对实例进行初始化, 如果想修改 __new__ 这个方法,那么最后要 ret ...

  6. php扩展开发-资源类型

    资源类型在内核中的结构 //zend_list.h typedef struct _zend_rsrc_list_entry { void *ptr; int type; int refcount; ...

  7. MySQL安装在Linux

    利用Alt+p工具将下载好的Linux版本的mysql软件加载到根目录. 1. 将下载好的MySQL文件MySQL-5.6.41-1.el6.i686.rpm-bundle.tar放到 根目录下的mk ...

  8. ELK之Elasticsearch

    安装并运行Elasetisearch cd elasticsearch-<version> ./bin/elasticsearch 如果你想把 Elasticsearch 作为一个守护进程 ...

  9. 区间DP入门题目合集

      区间DP主要思想是先在小区间取得最优解,然后小区间合并时更新大区间的最优解.       基本代码: //mst(dp,0) 初始化DP数组 ;i<=n;i++) { dp[i][i]=初始 ...

  10. 笔记-python-standard library-16.3 time

    笔记-python-standard library-16.3 time 1.      time 1.1.    开始 time模块中时间表现的格式主要有三种: timestamp时间戳,时间戳表示 ...