Floyd算法(二)之 C++详解
本章是弗洛伊德算法的C++实现。
目录
1. 弗洛伊德算法介绍
2. 弗洛伊德算法图解
3. 弗洛伊德算法的代码说明
4. 弗洛伊德算法的源码转载请注明出处:http://www.cnblogs.com/skywang12345/
更多内容:数据结构与算法系列 目录
弗洛伊德算法介绍
和Dijkstra算法一样,弗洛伊德(Floyd)算法也是一种用于寻找给定的加权图中顶点间最短路径的算法。该算法名称以创始人之一、1978年图灵奖获得者、斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名。
基本思想
通过Floyd计算图G=(V,E)中各个顶点的最短路径时,需要引入一个矩阵S,矩阵S中的元素a[i][j]表示顶点i(第i个顶点)到顶点j(第j个顶点)的距离。
假设图G中顶点个数为N,则需要对矩阵S进行N次更新。初始时,矩阵S中顶点a[i][j]的距离为顶点i到顶点j的权值;如果i和j不相邻,则a[i][j]=∞。 接下来开始,对矩阵S进行N次更新。第1次更新时,如果"a[i][j]的距离" > "a[i][0]+a[0][j]"(a[i][0]+a[0][j]表示"i与j之间经过第1个顶点的距离"),则更新a[i][j]为"a[i][0]+a[0][j]"。 同理,第k次更新时,如果"a[i][j]的距离" > "a[i][k]+a[k][j]",则更新a[i][j]为"a[i][k]+a[k][j]"。更新N次之后,操作完成!
单纯的看上面的理论可能比较难以理解,下面通过实例来对该算法进行说明。
弗洛伊德算法图解

以上图G4为例,来对弗洛伊德进行算法演示。

初始状态:S是记录各个顶点间最短路径的矩阵。
第1步:初始化S。
矩阵S中顶点a[i][j]的距离为顶点i到顶点j的权值;如果i和j不相邻,则a[i][j]=∞。实际上,就是将图的原始矩阵复制到S中。
注:a[i][j]表示矩阵S中顶点i(第i个顶点)到顶点j(第j个顶点)的距离。
第2步:以顶点A(第1个顶点)为中介点,若a[i][j] > a[i][0]+a[0][j],则设置a[i][j]=a[i][0]+a[0][j]。
以顶点a[1]6,上一步操作之后,a[1][6]=∞;而将A作为中介点时,(B,A)=12,(A,G)=14,因此B和G之间的距离可以更新为26。
同理,依次将顶点B,C,D,E,F,G作为中介点,并更新a[i][j]的大小。
弗洛伊德算法的代码说明
以"邻接矩阵"为例对弗洛伊德算法进行说明,对于"邻接表"实现的图在后面会给出相应的源码。
1. 基本定义
class MatrixUDG {
#define MAX 100
#define INF (~(0x1<<31)) // 无穷大(即0X7FFFFFFF)
private:
char mVexs[MAX]; // 顶点集合
int mVexNum; // 顶点数
int mEdgNum; // 边数
int mMatrix[MAX][MAX]; // 邻接矩阵
public:
// 创建图(自己输入数据)
MatrixUDG();
// 创建图(用已提供的矩阵)
//MatrixUDG(char vexs[], int vlen, char edges[][2], int elen);
MatrixUDG(char vexs[], int vlen, int matrix[][9]);
~MatrixUDG();
// 深度优先搜索遍历图
void DFS();
// 广度优先搜索(类似于树的层次遍历)
void BFS();
// prim最小生成树(从start开始生成最小生成树)
void prim(int start);
// 克鲁斯卡尔(Kruskal)最小生成树
void kruskal();
// Dijkstra最短路径
void dijkstra(int vs, int vexs[], int dist[]);
// Floyd最短路径
void floyd(int path[][MAX], int dist[][MAX]);
// 打印矩阵队列图
void print();
private:
// 读取一个输入字符
char readChar();
// 返回ch在mMatrix矩阵中的位置
int getPosition(char ch);
// 返回顶点v的第一个邻接顶点的索引,失败则返回-1
int firstVertex(int v);
// 返回顶点v相对于w的下一个邻接顶点的索引,失败则返回-1
int nextVertex(int v, int w);
// 深度优先搜索遍历图的递归实现
void DFS(int i, int *visited);
// 获取图中的边
EData* getEdges();
// 对边按照权值大小进行排序(由小到大)
void sortEdges(EData* edges, int elen);
// 获取i的终点
int getEnd(int vends[], int i);
};
Graph是邻接矩阵对应的结构体。
vexs用于保存顶点,vexnum是顶点数,edgnum是边数;matrix则是用于保存矩阵信息的二维数组。例如,matrix[i][j]=1,则表示"顶点i(即vexs[i])"和"顶点j(即vexs[j])"是邻接点;matrix[i][j]=0,则表示它们不是邻接点。
2. 弗洛伊德算法
/*
* floyd最短路径。
* 即,统计图中各个顶点间的最短路径。
*
* 参数说明:
* path -- 路径。path[i][j]=k表示,"顶点i"到"顶点j"的最短路径会经过顶点k。
* dist -- 长度数组。即,dist[i][j]=sum表示,"顶点i"到"顶点j"的最短路径的长度是sum。
*/
void MatrixUDG::floyd(int path[][MAX], int dist[][MAX])
{
int i,j,k;
int tmp;
// 初始化
for (i = 0; i < mVexNum; i++)
{
for (j = 0; j < mVexNum; j++)
{
dist[i][j] = mMatrix[i][j]; // "顶点i"到"顶点j"的路径长度为"i到j的权值"。
path[i][j] = j; // "顶点i"到"顶点j"的最短路径是经过顶点j。
}
}
// 计算最短路径
for (k = 0; k < mVexNum; k++)
{
for (i = 0; i < mVexNum; i++)
{
for (j = 0; j < mVexNum; j++)
{
// 如果经过下标为k顶点路径比原两点间路径更短,则更新dist[i][j]和path[i][j]
tmp = (dist[i][k]==INF || dist[k][j]==INF) ? INF : (dist[i][k] + dist[k][j]);
if (dist[i][j] > tmp)
{
// "i到j最短路径"对应的值设,为更小的一个(即经过k)
dist[i][j] = tmp;
// "i到j最短路径"对应的路径,经过k
path[i][j] = path[i][k];
}
}
}
}
// 打印floyd最短路径的结果
cout << "floyd: " << endl;
for (i = 0; i < mVexNum; i++)
{
for (j = 0; j < mVexNum; j++)
cout << setw(2) << dist[i][j] << " ";
cout << endl;
}
}
弗洛伊德算法的源码
这里分别给出"邻接矩阵图"和"邻接表图"的弗洛伊德算法源码。
Floyd算法(二)之 C++详解的更多相关文章
- Floyd算法(三)之 Java详解
前面分别通过C和C++实现了弗洛伊德算法,本文介绍弗洛伊德算法的Java实现. 目录 1. 弗洛伊德算法介绍 2. 弗洛伊德算法图解 3. 弗洛伊德算法的代码说明 4. 弗洛伊德算法的源码 转载请注明 ...
- Dijkstra算法(二)之 C++详解
本章是迪杰斯特拉算法的C++实现. 目录 1. 迪杰斯特拉算法介绍 2. 迪杰斯特拉算法图解 3. 迪杰斯特拉算法的代码说明 4. 迪杰斯特拉算法的源码 转载请注明出处:http://www.cnbl ...
- Prim算法(二)之 C++详解
本章是普里姆算法的C++实现. 目录 1. 普里姆算法介绍 2. 普里姆算法图解 3. 普里姆算法的代码说明 4. 普里姆算法的源码 转载请注明出处:http://www.cnblogs.com/sk ...
- Kruskal算法(二)之 C++详解
本章是克鲁斯卡尔算法的C++实现. 目录 1. 最小生成树 2. 克鲁斯卡尔算法介绍 3. 克鲁斯卡尔算法图解 4. 克鲁斯卡尔算法分析 5. 克鲁斯卡尔算法的代码说明 6. 克鲁斯卡尔算法的源码 转 ...
- 转:JAVAWEB开发之权限管理(二)——shiro入门详解以及使用方法、shiro认证与shiro授权
原文地址:JAVAWEB开发之权限管理(二)——shiro入门详解以及使用方法.shiro认证与shiro授权 以下是部分内容,具体见原文. shiro介绍 什么是shiro shiro是Apache ...
- 二叉搜索树详解(Java实现)
1.二叉搜索树定义 二叉搜索树,是指一棵空树或者具有下列性质的二叉树: 若任意节点的左子树不空,则左子树上所有节点的值均小于它的根节点的值: 若任意节点的右子树不空,则右子树上所有节点的值均大于它的根 ...
- 数据结构图文解析之:二叉堆详解及C++模板实现
0. 数据结构图文解析系列 数据结构系列文章 数据结构图文解析之:数组.单链表.双链表介绍及C++模板实现 数据结构图文解析之:栈的简介及C++模板实现 数据结构图文解析之:队列详解与C++模板实现 ...
- Java进阶(三十二) HttpClient使用详解
Java进阶(三十二) HttpClient使用详解 Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们 ...
- Spring Boot 启动(二) 配置详解
Spring Boot 启动(二) 配置详解 Spring 系列目录(https://www.cnblogs.com/binarylei/p/10198698.html) Spring Boot 配置 ...
随机推荐
- React 随笔二
这周做的demo3和demo4.5 随记的小点. 1.js错误提示: Warning: Each child in an array or iterator should have a unique ...
- 如何让ECSHOP不同的分类调用不同模板方法
如何给ecshop商品分类,显示不同的模板的话.可以通过不同的分类ID来取得不同模板.我们可以通过分类ID来判断,比如分类为1的,调用cat1.dwt.分类为2的,调用cat2.dwt,我们在cate ...
- System.DateTimeOffset 中新增的Unix 时间戳方法
// System.DateTimeOffset [__DynamicallyInvokable] public static DateTimeOffset FromUnixTimeMilliseco ...
- 初试TinyIoCContainer笔记
第一次看到TinyIoCContainer是在用NancyFx的时候,在Bootstrapper那里看到了她的影子. 那些叫Tiny的东西都挺有意思,IoC容器是我第一次遇到,于是找了些文章看了看,自 ...
- 【菜鸟玩Linux开发】在C++里操作MySQL
MySQL是一个的开源关系型数据库,对于服务端开发来说是一个优秀的选择.本篇内容将介绍如何在C++程序里操作MySQL数据库. ———————————————————————————————————— ...
- Web 数据存储总结
随着Web应用程序的出现,也产生了对于能够在客户端上存储用户信息能力的要求.这个问题的第一个解决方案是以cookie形似出现的.网景公司在一份名为“Persistent Client State: H ...
- [.net 面向对象编程基础] (2) 关于面向对象编程
[.net 面向对象编程基础] (2) 关于面向对象编程 首先是,面向对象编程英文 Object-Oriented Programming 简称 OOP 通俗来说,就是 针对对象编程的意思 那么问 ...
- Cassandra中的数据一致性
Cassandra中数据一致性指的是数据行在各个复制节点(replicas)上的更新和同步程度.通过提供tunable consistency,Cassandra扩展了eventual cons ...
- java线程与并发(二)
一般而言,线程通常有以下的这么几个状态: 创建状态:准备好了一个多线程操作对象 就绪状态:调用了start()方法,等待CPU调度 运行状态:执行run()方法,正在运行 阻塞状态:暂时停止执行,把资 ...
- 使用后台服务数据更新UI
https://www.websmithing.com/2011/02/01/how-to-update-the-ui-in-an-android-activity-using-data-from-a ...