转自:https://www.cnblogs.com/coder2012/p/4746941.html

外键以及relationship

首先创建数据库,在这里一个user对应多个address,因此需要在address上增加user_id这个外键(一对多)。

#!/usr/bin/env python
# encoding: utf-8 from sqlalchemy import create_engine
from sqlalchemy import Column
from sqlalchemy import Integer
from sqlalchemy import String
from sqlalchemy import ForeignKey
from sqlalchemy.orm import backref
from sqlalchemy.orm import sessionmaker
from sqlalchemy.orm import relationship, backref
from sqlalchemy.ext.declarative import declarative_base Base = declarative_base() class User(Base):
__tablename__ = 'users' id = Column(Integer, primary_key=True)
name = Column(String(32)) addresses = relationship("Address", order_by="Address.id", backref="user") class Address(Base):
__tablename__ = 'addresses'
id = Column(Integer, primary_key=True)
email_address = Column(String(32), nullable=False)
user_id = Column(Integer, ForeignKey('users.id')) #user = relationship("User", backref=backref('addresses', order_by=id)) engine = create_engine('mysql://root:root@localhost:3306/test', echo=True)
#Base.metadata.create_all(engine)

接下来,调用user和address来添加数据,

>>> jack = User(name='jack')
>>> jack.address
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'User' object has no attribute 'address'
>>> jack.addresses
[]
>>> jack.addresses = [Address(email_address='test@test.com'), Address(email_address='test1@test1.com')]
>>> jack.addresses
[<demo.Address object at 0x7f2536564f90>, <demo.Address object at 0x7f2535dc71d0>]
>>> session.add(jack)
>>> session.commit()
2015-08-19 13:45:36,237 INFO sqlalchemy.engine.base.Engine SHOW VARIABLES LIKE 'sql_mode'
2015-08-19 13:45:36,237 INFO sqlalchemy.engine.base.Engine ()
2015-08-19 13:45:36,238 INFO sqlalchemy.engine.base.Engine SELECT DATABASE()
2015-08-19 13:45:36,238 INFO sqlalchemy.engine.base.Engine ()
2015-08-19 13:45:36,239 INFO sqlalchemy.engine.base.Engine show collation where `Charset` = 'utf8' and `Collation` = 'utf8_bin'
2015-08-19 13:45:36,239 INFO sqlalchemy.engine.base.Engine ()
2015-08-19 13:45:36,239 INFO sqlalchemy.engine.base.Engine SELECT CAST('test plain returns' AS CHAR(60)) AS anon_1
2015-08-19 13:45:36,239 INFO sqlalchemy.engine.base.Engine ()
2015-08-19 13:45:36,240 INFO sqlalchemy.engine.base.Engine SELECT CAST('test unicode returns' AS CHAR(60)) AS anon_1
2015-08-19 13:45:36,240 INFO sqlalchemy.engine.base.Engine ()
2015-08-19 13:45:36,240 INFO sqlalchemy.engine.base.Engine SELECT CAST('test collated returns' AS CHAR CHARACTER SET utf8) COLLATE utf8_bin AS anon_1
2015-08-19 13:45:36,240 INFO sqlalchemy.engine.base.Engine ()
2015-08-19 13:45:36,241 INFO sqlalchemy.engine.base.Engine BEGIN (implicit)
2015-08-19 13:45:36,242 INFO sqlalchemy.engine.base.Engine INSERT INTO users (name) VALUES (%s)
2015-08-19 13:45:36,242 INFO sqlalchemy.engine.base.Engine ('jack',)
2015-08-19 13:45:36,243 INFO sqlalchemy.engine.base.Engine INSERT INTO addresses (email_address, user_id) VALUES (%s, %s)
2015-08-19 13:45:36,243 INFO sqlalchemy.engine.base.Engine ('test@test.com', 1L)
2015-08-19 13:45:36,243 INFO sqlalchemy.engine.base.Engine INSERT INTO addresses (email_address, user_id) VALUES (%s, %s)
2015-08-19 13:45:36,243 INFO sqlalchemy.engine.base.Engine ('test1@test1.com', 1L)
2015-08-19 13:45:36,244 INFO sqlalchemy.engine.base.Engine COMMIT
>>>

此时,查看数据库,可以得到刚才插入的数据,

mysql> select * from users;
+----+------+
| id | name |
+----+------+
| 1 | jack |
+----+------+
1 row in set (0.00 sec) mysql> select * from addresses;
+----+-----------------+---------+
| id | email_address | user_id |
+----+-----------------+---------+
| 1 | test@test.com | 1 |
| 2 | test1@test1.com | 1 |
+----+-----------------+---------+
2 rows in set (0.00 sec)

join查询

如果不使用join的话,可以直接联表查询,

>>> session.query(User.name, Address.email_address).filter(User.id==Address.user_id).filter(Address.email_address=='test@test.com').all()
2015-08-19 14:02:02,877 INFO sqlalchemy.engine.base.Engine SELECT users.name AS users_name, addresses.email_address AS addresses_email_address
FROM users, addresses
WHERE users.id = addresses.user_id AND addresses.email_address = %s
2015-08-19 14:02:02,878 INFO sqlalchemy.engine.base.Engine ('test@test.com',)
[('jack', 'test@test.com')]

在sqlalchemy中提供了Queqy.join()函数,

>>> session.query(User).join(Address).filter(Address.email_address=='test@test.com').first()
2015-08-19 14:06:56,624 INFO sqlalchemy.engine.base.Engine SELECT users.id AS users_id, users.name AS users_name
FROM users INNER JOIN addresses ON users.id = addresses.user_id
WHERE addresses.email_address = %s
LIMIT %s
2015-08-19 14:06:56,624 INFO sqlalchemy.engine.base.Engine ('test@test.com', 1)
<demo.User object at 0x7f9a74139a10>
>>> session.query(User).join(Address).filter(Address.email_address=='test@test.com').first().name
2015-08-19 14:07:04,224 INFO sqlalchemy.engine.base.Engine SELECT users.id AS users_id, users.name AS users_name
FROM users INNER JOIN addresses ON users.id = addresses.user_id
WHERE addresses.email_address = %s
LIMIT %s
2015-08-19 14:07:04,224 INFO sqlalchemy.engine.base.Engine ('test@test.com', 1)
'jack'
>>> session.query(User).join(Address).filter(Address.email_address=='test@test.com').first().addresses
2015-08-19 14:07:06,534 INFO sqlalchemy.engine.base.Engine SELECT users.id AS users_id, users.name AS users_name
FROM users INNER JOIN addresses ON users.id = addresses.user_id
WHERE addresses.email_address = %s
LIMIT %s
2015-08-19 14:07:06,534 INFO sqlalchemy.engine.base.Engine ('test@test.com', 1)
2015-08-19 14:07:06,535 INFO sqlalchemy.engine.base.Engine SELECT addresses.id AS addresses_id, addresses.email_address AS addresses_email_address, addresses.user_id AS addresses_user_id
FROM addresses
WHERE %s = addresses.user_id ORDER BY addresses.id
2015-08-19 14:07:06,535 INFO sqlalchemy.engine.base.Engine (1L,)
[<demo.Address object at 0x7f9a74139350>, <demo.Address object at 0x7f9a741390d0>]
>>>

注意,上面的用法的前提是存在外键的情况下,如果没有外键,那么可以使用,

query.join(Address, User.id==Address.user_id)    # explicit condition
query.join(User.addresses) # specify relationship from left to right
query.join(Address, User.addresses) # same, with explicit target
query.join('addresses')

表的别名

>>> from sqlalchemy.orm import aliased
>>> adalias1 = aliased(Address)

子查询

假设我们需要这样一个查询,

mysql> SELECT users.*, adr_count.address_count FROM users LEFT OUTER JOIN
-> (SELECT user_id, count(*) AS address_count
-> FROM addresses GROUP BY user_id) AS adr_count
-> ON users.id=adr_count.user_id;
+----+------+---------------+
| id | name | address_count |
+----+------+---------------+
| 1 | jack | 2 |
+----+------+---------------+
1 row in set (0.00 sec)
# 生成子句,等同于(select user_id ... group_by user_id)
>>> sbq = session.query(Address.user_id, func.count('*').label('address_count')).group_by(Address.user_id).subquery() # 联接子句,注意子句中需要使用c来调用字段内容
>>> session.query(User.name, sbq.c.address_count).outerjoin(sbq, User.id==sbq.c.user_id).all()
2015-08-19 14:42:53,425 INFO sqlalchemy.engine.base.Engine SELECT users.name AS users_name, anon_1.address_count AS anon_1_address_count
FROM users LEFT OUTER JOIN (SELECT addresses.user_id AS user_id, count(%s) AS address_count
FROM addresses GROUP BY addresses.user_id) AS anon_1 ON users.id = anon_1.user_id
2015-08-19 14:42:53,425 INFO sqlalchemy.engine.base.Engine ('*',)
[('jack', 2L)]
>>>

包含contains

query.filter(User.addresses.contains(someaddress))

数据删除delete

>>> session.delete(jack)
>>> session.query(User).filter_by(name='jack').count()
0

外键配置

在上面的例子中,删除了user-jack,但是address中的数据并没有删除。

cascade字段用来

addresses = relationship("Address", backref='user',
cascade="all, delete, delete-orphan")

sqlalchemy(二)高级用法 2的更多相关文章

  1. sqlalchemy(二)高级用法

    sqlalchemy(二)高级用法 本文将介绍sqlalchemy的高级用法. 外键以及relationship 首先创建数据库,在这里一个user对应多个address,因此需要在address上增 ...

  2. 【iOS开发】Alamofire框架的使用二 高级用法

    Alamofire是在URLSession和URL加载系统的基础上写的.所以,为了更好地学习这个框架,建议先熟悉下列几个底层网络协议栈: URL Loading System Programming ...

  3. redis(二)高级用法

    redis(二)高级用法 事务 redis的事务是一组命令的集合.事务同命令一样都是redis的最小执行单元,一个事务中的命令要么执行要么都不执行. 首先需要multi命令来开始事务,用exec命令来 ...

  4. C语言语法笔记 – 高级用法 指针数组 指针的指针 二维数组指针 结构体指针 链表 | IT宅.com

    原文:C语言语法笔记 – 高级用法 指针数组 指针的指针 二维数组指针 结构体指针 链表 | IT宅.com C语言语法笔记 – 高级用法 指针数组 指针的指针 二维数组指针 结构体指针 链表 | I ...

  5. SolrNet高级用法(分页、Facet查询、任意分组)

    前言 如果你在系统中用到了Solr的话,那么肯定会碰到从Solr中反推数据的需求,基于数据库数据生产索引后,那么Solr索引的数据相对准确,在电商需求中经常会碰到菜单.导航分类(比如电脑.PC的话会有 ...

  6. 再谈Newtonsoft.Json高级用法

    上一篇Newtonsoft.Json高级用法发布以后收到挺多回复的,本篇将分享几点挺有用的知识点和最近项目中用到的一个新点进行说明,做为对上篇文章的补充. 阅读目录 动态改变属性序列化名称 枚举值序列 ...

  7. Newtonsoft.Json高级用法(转)

    手机端应用讲究速度快,体验好.刚好手头上的一个项目服务端接口有性能问题,需要进行优化.在接口多次修改中,实体添加了很多字段用于中间计算或者存储,然后最终用Newtonsoft.Json进行序列化返回数 ...

  8. [.net 面向对象程序设计进阶] (3) 正则表达式 (二) 高级应用

    [.net 面向对象程序设计进阶] (2) 正则表达式 (二)  高级应用 上一节我们说到了C#使用正则表达式的几种方法(Replace,Match,Matches,IsMatch,Split等),还 ...

  9. 【转】 Newtonsoft.Json高级用法

    手机端应用讲究速度快,体验好.刚好手头上的一个项目服务端接口有性能问题,需要进行优化.在接口多次修改中,实体添加了很多字段用于中间计算或者存储,然后最终用Newtonsoft.Json进行序列化返回数 ...

随机推荐

  1. yum安装Apache Web Server后各个文件存放位置

    yum安装Apache Web Server后各个文件存放位置   用yum安装apache软件: yum -y install httpd 安装完成后,来查看理解yum安装软件的过程和安装路径.   ...

  2. .net SQL分页

    1.分页SQL declare @pagesize integer,@cpage integer; --变量定义 ; --页码大小 ; --当前页 ---@cpage 为 第一页的时候 --selec ...

  3. python学习之range()和xrange()

    在python2中,xrange()返回一个xrange对象,注意这个对象并不是生成器,也不是迭代器,但是是迭代对象. 而range()则返回列表对象. >>> range(10) ...

  4. Javascript网页截屏的方法

    最近我在研究开发一个火狐插件,具体的功能是将网页内容截屏并分享到微博上.目前基本功能已经实现,大家可以在 @程序师视野 里看到用这个截图插件分享的微博的效果. 之前我曾写过如何将canvas图形转换成 ...

  5. Ubuntu 14.04 下FTP服务器的搭建

    FTP服务器的搭建,我要实现的需求是: 不允许匿名访问,因为我的机器不想让谁都能登录上来,随便获取文件, 需要锁定一个目录,因为在家里,我需要给媳妇下载一些电影 韩剧之类的东西,媳妇会来我机器下载,但 ...

  6. vim编码设置

    转载于:http://www.cnblogs.com/freewater/archive/2011/08/26/2154602.html vim 编码方式的设置和所有的流行文本编辑器一样,Vim 可以 ...

  7. lua工具库penlight--07函数编程(一)

    函数编程 序列 Lua 迭代器 (最简单的形式) 是一个函数,可以多次调用返回一个或多个值.for in语句理解迭代器和循环,直到该函数将返回nil. Lua有标准的序列迭代器 (ipairs和pai ...

  8. Unity3D 5中增加WebGL 播放插件

    http://www.csdn.net/article/2014-03-18/2818822-Unity-5-game-engine 其实我是搞3d的,这篇文章里所有的术语看了都有很强的亲切感. Un ...

  9. python的and和or优先级

    原题 输入一年份,判断该年份是否是闰年并输出结果.(编程题) 注:凡符合下面两个条件之一的年份是闰年. (1) 能被4整除但不能被100整除. (2) 能被400整除. 答案: def get_yea ...

  10. PAT005 Path in a Heap

    题目: Insert a sequence of given numbers into an initially empty min-heap H. Then for any given index ...