最长公共子序列(LCS)问题 Longest Common Subsequence 与最长公告字串 longest common substr
问题描述:字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列。令给定的字符序列X=“x0,x1,…,xm-1”,序列Y=“y0,y1,…,yk-1”是X的子序列,存在X的一个严格递增下标序列<i0,i1,…,ik-1>,使得对所有的j=0,1,…,k-1,有xij=yj。例如,X=“ABCBDAB”,Y=“BCDB”是X的一个子序列。
考虑最长公共子序列问题如何分解成子问题,设A=“a0,a1,…,am-1”,B=“b0,b1,…,bm-1”,并Z=“z0,z1,…,zk-1”为它们的最长公共子序列。不难证明有以下性质:
(1) 如果am-1=bn-1,则zk-1=am-1=bn-1,且“z0,z1,…,zk-2”是“a0,a1,…,am-2”和“b0,b1,…,bn-2”的一个最长公共子序列;
(2) 如果am-1!=bn-1,则若zk-1!=am-1,蕴涵“z0,z1,…,zk-1”是“a0,a1,…,am-2”和“b0,b1,…,bn-1”的一个最长公共子序列;
(3) 如果am-1!=bn-1,则若zk-1!=bn-1,蕴涵“z0,z1,…,zk-1”是“a0,a1,…,am-1”和“b0,b1,…,bn-2”的一个最长公共子序列。
这样,在找A和B的公共子序列时,如有am-1=bn-1,则进一步解决一个子问题,找“a0,a1,…,am-2”和“b0,b1,…,bm-2”的一个最长公共子序列;如果am-1!=bn-1,则要解决两个子问题,找出“a0,a1,…,am-2”和“b0,b1,…,bn-1”的一个最长公共子序列和找出“a0,a1,…,am-1”和“b0,b1,…,bn-2”的一个最长公共子序列,再取两者中较长者作为A和B的最长公共子序列。
求解:
引进一个二维数组c[][],用c[i][j]记录X[i]与Y[j] 的LCS 的长度,b[i][j]记录c[i][j]是通过哪一个子问题的值求得的,以决定搜索的方向。
我们是自底向上进行递推计算,那么在计算c[i,j]之前,c[i-1][j-1],c[i-1][j]与c[i][j-1]均已计算出来。此时我们根据X[i] = Y[j]还是X[i] != Y[j],就可以计算出c[i][j]。
问题的递归式写成:
回溯输出最长公共子序列过程:
算法分析:
由于每次调用至少向上或向左(或向上向左同时)移动一步,故最多调用(m + n)次就会遇到i = 0或j = 0的情况,此时开始返回。返回时与递归调用时方向相反,步数相同,故算法时间复杂度为Θ(m + n)。
http://blog.csdn.net/yysdsyl/article/details/4226630
一切没有code的分析都是耍流氓。。。 上code
void printLCS(string str1, string str2, vector<vector<int> >flag, int idx1, int idx2)
{ if(idx1 == || idx2 == )
return;
if(flag[idx1][idx2] == )
{
printLCS(str1, str2,flag, idx1-, idx2-);
cout << idx1 <<"\t"<< idx2 <<"\t";
cout << str1[idx1-] <<"\t"<<endl;
}
else if(flag[idx1][idx2] == )
printLCS(str1, str2,flag, idx1, idx2-);
else if(flag[idx1][idx2] == )
printLCS(str1, str2,flag, idx1-, idx2);
} int lcs(string str1, string str2)
{
const size_t len1 = str1.size();
const size_t len2 = str2.size(); if(len1 == || len2 == )
return ; int f[len1 + ][len2 + ];
vector<vector<int> >flag;
vector<int> tmp;
tmp.resize(len2+);
for(size_t i = ; i<= len1; i++)
flag.push_back(tmp); //memset(flag,0,sizeof(flag)); // 1: leftup; 2: left; 3: up
for(size_t i = ; i <= len1; i++)
{
f[i][] = ;
}
for(size_t i = ; i <= len2; i++)
{
f[][i] = ;
} for(size_t i = ; i <= len1; i++)
{
for(size_t j = ; j <= len2; j++)
{
if(str1[i-] == str2[j-])
{
f[i][j] = f[i-][j-] + ;
flag[i][j] = ;
}
else
{
f[i][j] = max(f[i][j-], f[i-][j]);
if(f[i][j-] > f[i-][j])
flag[i][j] = ;
else
flag[i][j] = ;
}
}
}
#if 0
for(size_t i = ; i <= len1; i++)
{
for(size_t j = ; j <= len2; j++)
{
//cout << "f["<<j<<"][" <<i<<"]" << f[j][i] <<"\n";
cout << f[i][j] <<"\t";
}
cout << endl;
}
cout << endl;
for(size_t i = ; i <= len1; i++)
{
for(size_t j = ; j <= len2; j++)
{
//cout << "f["<<j<<"][" <<i<<"]" << f[j][i] <<"\n";
cout << flag[i][j] <<"\t";
}
cout << endl;
}
#endif
printLCS(str1, str2, flag, len1, len2);
return f[len1][len2]; }
最长公共字串:
找两个字符串的最长公共子串,这个子串要求在原字符串中是连续的。其实这又是一个序贯决策问题,可以用动态规划来求解。我们采用一个二维矩阵来记录中间的结果。这个二维矩阵怎么构造呢?直接举个例子吧:"bab"和"caba"(当然我们现在一眼就可以看出来最长公共子串是"ba"或"ab")
b a b
c 0 0 0
a 0 1 0
b 1 0 1
a 0 1 0
我们看矩阵的斜对角线最长的那个就能找出最长公共子串。
不过在二维矩阵上找最长的由1组成的斜对角线也是件麻烦费时的事,下面改进:当要在矩阵是填1时让它等于其左上角元素加1。
b a b
c 0 0 0
a 0 1 0
b 1 0 2
a 0 2 0
这样矩阵中的最大元素就是 最长公共子串的长度。
在构造这个二维矩阵的过程中由于得出矩阵的某一行后其上一行就没用了,所以实际上在程序中可以用一维数组来代替这个矩阵。
与Subsequence问题不同的是,Substring问题不光要求下标序列是递增的,还要求每次
递增的增量为1, 即两个下标序列为:
<i, i+1, i+2, ..., i+k-1> 和 <j, j+1, j+2, ..., j+k-1>
类比Subquence问题的动态规划解法,Substring也可以用动态规划解决,令
c[i][j]表示Xi和Yi的最大Substring的长度,比如
X = <y, e, d, f>
Y = <y, e, k, f>
c[1][1] = 1
c[2][2] = 2
c[3][3] = 0
c[4][4] = 1
动态转移方程为:
如果xi == yj, 则 c[i][j] = c[i-1][j-1]+1
如果xi ! = yj, 那么c[i][j] = 0
最后求Longest Common Substring的长度等于
max{ c[i][j], 1<=i<=n, 1<=j<=m}
完整的代码如下:
/**
找出两个字符串的最长公共连续子串的长度
** author :liuzhiwei
** data :2011-08-16
**/
#include "stdio.h"
#include "string.h"
#include "stdlib.h" int longest_common_substring(char *str1, char *str2)
{
int i,j,k,len1,len2,max,x,y;
len1 = strlen(str1);
len2 = strlen(str2);
int **c = new int*[len1+];
for(i = ; i < len1+; i++)
c[i] = new int[len2+];
for(i = ; i < len1+; i++)
c[i][]=; //第0列都初始化为0
for(j = ; j < len2+; j++)
c[][j]=; //第0行都初始化为0
max = -;
for(i = ; i < len1+ ; i++)
{
for(j = ; j < len2+; j++)
{
if(str1[i-]==str2[j-]) //只需要跟左上方的c[i-1][j-1]比较就可以了
c[i][j]=c[i-][j-]+;
else //不连续的时候还要跟左边的c[i][j-1]、上边的c[i-1][j]值比较,这里不需要
c[i][j]=;
if(c[i][j]>max)
{
max=c[i][j];
x=i;
y=j;
}
}
} //输出公共子串
char s[];
k=max;
i=x-,j=y-;
s[k--]='\0';
while(i>= && j>=)
{
if(str1[i]==str2[j])
{
s[k--]=str1[i];
i--;
j--;
}
else //只要有一个不相等,就说明相等的公共字符断了,不连续了
break;
}
printf("最长公共子串为:");
puts(s);
for(i = ; i < len1+; i++) //释放动态申请的二维数组
delete[] c[i];
delete[] c;
return max;
}
int main(void)
{
char str1[],str2[];
printf("请输入第一个字符串:");
gets(str1);
printf("请输入第二个字符串:");
gets(str2);
int len = longest_common_substring(str1, str2);
printf("最长公共连续子串的长度为:%d\n",len);
system("pause");
return ;
}
最长公共子序列(LCS)问题 Longest Common Subsequence 与最长公告字串 longest common substr的更多相关文章
- 动态规划之最长公共子序列LCS(Longest Common Subsequence)
一.问题描述 由于最长公共子序列LCS是一个比较经典的问题,主要是采用动态规划(DP)算法去实现,理论方面的讲述也非常详尽,本文重点是程序的实现部分,所以理论方面的解释主要看这篇博客:http://b ...
- C++版 - Lintcode 77-Longest Common Subsequence最长公共子序列(LCS) - 题解
版权声明:本文为博主Bravo Yeung(知乎UserName同名)的原创文章,欲转载请先私信获博主允许,转载时请附上网址 http://blog.csdn.net/lzuacm. C++版 - L ...
- POJ 1458 Common Subsequence(最长公共子序列LCS)
POJ1458 Common Subsequence(最长公共子序列LCS) http://poj.org/problem?id=1458 题意: 给你两个字符串, 要你求出两个字符串的最长公共子序列 ...
- 编程算法 - 最长公共子序列(LCS) 代码(C)
最长公共子序列(LCS) 代码(C) 本文地址: http://blog.csdn.net/caroline_wendy 题目: 给定两个字符串s,t, 求出这两个字符串最长的公共子序列的长度. 字符 ...
- 1006 最长公共子序列Lcs
1006 最长公共子序列Lcs 基准时间限制:1 秒 空间限制:131072 KB 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). 比如两个串为: abcicba abdks ...
- 动态规划----最长公共子序列(LCS)问题
题目: 求解两个字符串的最长公共子序列.如 AB34C 和 A1BC2 则最长公共子序列为 ABC. 思路分析:可以用dfs深搜,这里使用到了前面没有见到过的双重循环递归.也可以使用动态规划,在建 ...
- 51Nod 1006:最长公共子序列Lcs(打印LCS)
1006 最长公共子序列Lcs 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). ...
- 51nod 1006 最长公共子序列Lcs 【LCS/打印path】
1006 最长公共子序列Lcs 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). ...
- 每日一题-——最长公共子序列(LCS)与最长公共子串
最长公共子序列(LCS) 思路: 代码: def LCS(string1,string2): len1 = len(string1) len2 = len(string2) res = [[0 for ...
- 51nod 1006:最长公共子序列Lcs
1006 最长公共子序列Lcs 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). ...
随机推荐
- ProxyStrike运行bug解决办法
ProxyStrike运行bug解决办法 由于curl中参数CURLOPT_SSL_VERIFYHOST的值取消原有的值1,导致ProxyStrike无法正常运行.所以,要运行该工具,需要手动修改/ ...
- 【最小割】【Dinic】Gym - 101128F - Landscaping
http://blog.csdn.net/lxy767087094/article/details/68942422 #include<cstdio> #include<cstrin ...
- 【欧拉函数】BZOJ2818-GCD
怎么漏了这一道……本来想要水一水,结果忘记了φ[1]=1,果然要滚一遍前面的知识…… #include<iostream> #include<cstdio> #include& ...
- 使 PHP 写的网站看上去像 asp 页面
# 使 PHP 代码看上去像 asp 页面 更改Apache 的httpd.conf中AddType application/x-httpd-php .php .phtml改为 AddType app ...
- node.js 中createConnection参数说明
host:主机地址 (默认:localhost) user:用户名 password:密码 port:端口号 (默认:3306) database:数据库名 charset:连接字符集(默认:'UTF ...
- 高手从零开始的全定制发行版-Linux from Scratch
在制作Linux发行版中Linux from Scratch可谓是真正的大师级.Linux from Scratch是在线的社区创建的一本电子书,目的是帮助那些根深蒂固的想方设法提高计算机性能的人(t ...
- Android-25种开源炫酷动画框架
前言 忙碌的工作终于可以停息一段时间了,最近突然有一个想法,就是自己写一个app,所以找了一些合适开源控件,这样更加省时,再此分享给大家,希望能对大家有帮助,此博文介绍的都是UI上面的框架,接下来会有 ...
- SVM核技巧的经典解释
支持向量机: Kernel by pluskid, on 2010-09-11, in Machine Learning 68 comments 本文是"支持向量机系列"的 ...
- Vue侦听器watch
虽然计算属性在大多数情况下更合适,但有时也需要一个自定义的侦听器.这就是为什么 Vue 通过 watch 选项提供了一个更通用的方法,来响应数据的变化.当需要在数据变化时执行异步或开销较大的操作时,这 ...
- python灰帽子学习感想
Gray Hat Python Python Programming for hackers and reverse engineers Python灰帽子:黑客与逆向project师的Python编 ...