Tree Requests
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Roman planted a tree consisting of n vertices. Each vertex contains a lowercase English letter. Vertex 1 is
the root of the tree, each of then - 1 remaining vertices has a parent in
the tree. Vertex is connected with its parent by an edge. The parent of vertex i is vertex pi,
the parent index is always less than the index of the vertex (i.e., pi < i).

The depth of the vertex is the number of nodes on the path from the root to v along
the edges. In particular, the depth of the root is equal to1.

We say that vertex u is in the subtree of vertex v,
if we can get from u to v,
moving from the vertex to the parent. In particular, vertex v is in its subtree.

Roma gives you m queries, the i-th
of which consists of two numbers vihi.
Let's consider the vertices in the subtree vi located
at depth hi.
Determine whether you can use the letters written at these vertices to make a string that is a palindrome. The letters that are written in the vertexes, can be rearranged in any order to make
a palindrome, but all letters should be used.

Input

The first line contains two integers nm (1 ≤ n, m ≤ 500 000)
— the number of nodes in the tree and queries, respectively.

The following line contains n - 1 integers p2, p3, ..., pn —
the parents of vertices from the second to the n-th (1 ≤ pi < i).

The next line contains n lowercase English letters, the i-th
of these letters is written on vertex i.

Next m lines describe the queries, the i-th
line contains two numbers vihi (1 ≤ vi, hi ≤ n)
— the vertex and the depth that appear in the i-th query.

Output

Print m lines. In the i-th
line print "Yes" (without the quotes), if in the i-th
query you can make a palindrome from the letters written on the vertices, otherwise print "No" (without the quotes).

Sample test(s)
input
6 5
1 1 1 3 3
zacccd
1 1
3 3
4 1
6 1
1 2
output
Yes
No
Yes
Yes
Yes
Note

String s is a palindrome if reads the same from left to right and
from right to left. In particular, an empty string is a palindrome.

Clarification for the sample test.

In the first query there exists only a vertex 1 satisfying all the conditions, we can form a palindrome "z".

In the second query vertices 5 and 6 satisfy condititions, they contain letters "с" and "d"
respectively. It is impossible to form a palindrome of them.

In the third query there exist no vertices at depth 1 and in subtree of 4. We may form an empty palindrome.

In the fourth query there exist no vertices in subtree of 6 at depth 1. We may form an empty palindrome.

In the fifth query there vertices 2, 3 and 4 satisfying all conditions above, they contain letters "a", "c"
and "c". We may form a palindrome "cac".

题意:

给定n个点的树。m个询问

以下n-1个数给出每一个点的父节点。1是root

每一个点有一个字母

以下n个小写字母给出每一个点的字母。

以下m行给出询问:

询问形如 (u, deep) 问u点的子树中,距离根的深度为deep的全部点的字母是否能在随意排列后组成回文串,能输出Yes.

思路:dfs序。给点又一次标号,dfs进入u点的时间戳记为l[u], 离开的时间戳记为r[u], 这样对于某个点u,他的子树节点相应区间都在区间 [l[u], r[u]]内。

把距离根深度同样的点都存到vector里 D[i] 表示深度为i的全部点,在dfs时能够顺便求出。

把询问按深度排序,query[i]表示全部深度为i的询问。

接下来依照深度一层层处理。

对于第i层,把全部处于第i层的节点都更新到26个树状数组上。

然后处理询问,直接查询树状数组上有多少种字母是奇数个的,显然奇数个字母的种数要<=1

处理完第i层。就把树状数组逆向操作,相当于清空树状数组

注意的一个地方就是 询问的深度是随意的,也就是说可能超过实际树的深度。也可能比当前点的深度小。。所以须要初始化一下答案。

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include <stdio.h>
#include <iostream>
#include <algorithm>
#include <sstream>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include <vector>
#include <string>
#include <time.h>
#include <math.h>
#include <iomanip>
#include <queue>
#include <stack>
#include <set>
#include <map>
const int inf = 1e9;
const double eps = 1e-8;
const double pi = acos(-1.0);
template <class T>
inline bool rd(T &ret) {
char c; int sgn;
if (c = getchar(), c == EOF) return 0;
while (c != '-' && (c<'0' || c>'9')) c = getchar();
sgn = (c == '-') ? -1 : 1;
ret = (c == '-') ? 0 : (c - '0');
while (c = getchar(), c >= '0'&&c <= '9') ret = ret * 10 + (c - '0');
ret *= sgn;
return 1;
}
template <class T>
inline void pt(T x) {
if (x < 0) { putchar('-'); x = -x; }
if (x > 9) pt(x / 10);
putchar(x % 10 + '0');
}
using namespace std;
const int N = 5e5 + 100;
typedef long long ll;
typedef pair<int, int> pii;
struct BIT {
int c[N], maxn;
void init(int n) { maxn = n; memset(c, 0, sizeof c); }
inline int Lowbit(int x) { return x&(-x); }
void change(int i, int x)//i点增量为x
{
while (i <= maxn)
{
c[i] += x;
i += Lowbit(i);
}
}
int sum(int x) {//区间求和 [1,x]
int ans = 0;
for (int i = x; i >= 1; i -= Lowbit(i))
ans += c[i];
return ans;
}
int query(int l, int r) {
return sum(r) - sum(l - 1);
}
}t[26];
int n, m;
char s[N];
vector<int>G[N], D[N];
int l[N], r[N], top;
vector<pii>query[N];
bool ans[N];
void dfs(int u, int fa, int dep) {
D[dep].push_back(u);
l[u] = ++top;
for (auto v : G[u])
if (v != fa)dfs(v, u, dep + 1);
r[u] = top;
}
int main() {
rd(n); rd(m);
fill(ans, ans + m + 10, 1);
for (int i = 0; i < 26; i++) t[i].init(n);
for (int i = 2, u; i <= n; i++)rd(u), G[u].push_back(i);
top = 0;
dfs(1, 1, 1);
scanf("%s", s + 1);
for (int i = 1, u, v; i <= m; i++) {
rd(u); rd(v); query[v].push_back(pii(u, i));
}
for (int i = 1; i <= n; i++)
{
if (D[i].size() == 0)break;
for (auto v : D[i]) t[s[v] - 'a'].change(l[v], 1); for (pii Q : query[i])
{
int ou = 0;
for (int j = 0; j < 26; j++)
{
if (t[j].query(l[Q.first], r[Q.first]))
ou += t[j].query(l[Q.first], r[Q.first]) & 1;
}
ans[Q.second] = ou <= 1;
}
for (auto v : D[i]) t[s[v] - 'a'].change(l[v], -1);
}
for (int i = 1; i <= m; i++)ans[i] ? puts("Yes") : puts("No"); return 0;
}

另一种方法

对于深度 直接保存全部的节点

利用xor推断节点出现次数

这样二分到两个下标l,r时

myxor[r]^myxor[l-1]即为l+1到r的xor值

推断该值二进制每一位是否为1 为1表示该位相应的字母出现了奇数次 从而得出答案 仅仅有700ms左右

#include<bits/stdc++.h>
using namespace std;
vector<int>f[555555];
vector<int>g[555555];
vector<int> myxor[555555];
int m,n;
char s[555555];
int tim,fst[555555],nxt[555555];
int x,y;
int maxdeep=0;
int hsh[555555]; void dfs(int u,int dis)
{
tim++;
fst[u]=tim;
hsh[tim]=u;
f[dis].push_back(tim);
for(unsigned int i=0;i<g[u].size();i++)
dfs(g[u][i],dis+1);
nxt[u]=tim;
maxdeep=max(maxdeep,dis);
} void work(int l,int r,int d,int &ans)
{
r--;
l--;
int ret;
if(r<0)
return; ret=myxor[d][r];
if(l>=0)
ret^=myxor[d][l];
while(ret)
{
ans=ans+(ret&1);
ret>>=1;
}
} int main()
{
scanf("%d%d",&m,&n);
for(int i=2;i<=m;i++)
{
scanf("%d",&x);
g[x].push_back(i);
}
for(int i=1;i<=m;i++)
{
scanf(" %c",&s[i]);
}
dfs(1,1);
for(int i=1;i<=maxdeep;i++)
{
myxor[i].push_back(1<<(s[hsh[f[i][0]]]-'a')); for(int j=1;j<f[i].size();j++)
{
myxor[i].push_back((1<<(s[hsh[f[i][j]]]-'a'))^myxor[i][j-1]);
}
} int has;
for(int ti=1;ti<=n;ti++)
{
has=0;
scanf("%d%d",&x,&y); //root x deepth y
int l =lower_bound(f[y].begin(),f[y].end(),fst[x])-f[y].begin();
int r =upper_bound(f[y].begin(),f[y].end(),nxt[x])-f[y].begin();
work(l,r,y,has);
if(has<2)
printf("Yes\n");
else
printf("No\n");
}
return 0;
}
#include<bits/stdc++.h>
using namespace std;
vector<int>G[500009];
vector<int>Query[500009];
int dep[500009];
char str[500009];
int ans[500009];
int height[500009];
void dfs(int u,int d)
{
for(int v:Query[u]) ans[v]^=dep[height[v]];
for(int v:G[u]) dfs(v,d+1); dep[d]^=(1<<(int)(str[u]-'a')); for(int v:Query[u]) ans[v]^=dep[height[v]];
}
int main()
{
int n,m,x,y;
scanf("%d%d",&n,&m);
for(int i=2;i<=n;i++)
{
scanf("%d",&x);
G[x].push_back(i);
}
scanf("%s",(str+1));
for(int i=1;i<=m;i++)
{
scanf("%d%d",&x,&y);
Query[x].push_back(i);
height[i]=y;
}
dfs(1,1);
for(int i=1;i<=m;i++)
{
if(ans[i]&(ans[i]-1)) printf("No\n");
else printf("Yes\n");
}
return 0;
}



Codeforces 570D TREE REQUESTS dfs序+树状数组 异或的更多相关文章

  1. Codeforces 570D TREE REQUESTS dfs序+树状数组

    链接 题解链接:点击打开链接 题意: 给定n个点的树.m个询问 以下n-1个数给出每一个点的父节点,1是root 每一个点有一个字母 以下n个小写字母给出每一个点的字母. 以下m行给出询问: 询问形如 ...

  2. poj3321-Apple Tree(DFS序+树状数组)

    Apple Tree Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 36442   Accepted: 10894 Desc ...

  3. pku-3321 Apple Tree(dfs序+树状数组)

    Description There is an apple tree outside of kaka's house. Every autumn, a lot of apples will grow ...

  4. POJ 3321 Apple Tree(dfs序树状数组)

    http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=10486 题意:一颗有n个分支的苹果树,根为1,每个分支只有一个苹果,给出n- ...

  5. POJ 3321:Apple Tree(dfs序+树状数组)

    题目大意:对树进行m次操作,有两类操作,一种是改变一个点的权值(将0变为1,1变为0),另一种为查询以x为根节点的子树点权值之和,开始时所有点权值为1. 分析: 对树进行dfs,将树变为序列,记录每个 ...

  6. CodeForces 570D - Tree Requests - [DFS序+二分]

    题目链接:https://codeforces.com/problemset/problem/570/D 题解: 这种题,基本上容易想到DFS序. 然后,我们如果再把所有节点分层存下来,那么显然可以根 ...

  7. Codeforces Round #225 (Div. 1) C. Propagating tree dfs序+树状数组

    C. Propagating tree Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/383/p ...

  8. Codeforces Round #225 (Div. 1) C. Propagating tree dfs序+ 树状数组或线段树

    C. Propagating tree Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/383/p ...

  9. HDU 5293 Tree chain problem 树形dp+dfs序+树状数组+LCA

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5293 题意: 给你一些链,每条链都有自己的价值,求不相交不重合的链能够组成的最大价值. 题解: 树形 ...

随机推荐

  1. zookeeper编程入门系列之zookeeper实现分布式进程监控和分布式共享锁(图文详解)

    本博文的主要内容有 一.zookeeper编程入门系列之利用zookeeper的临时节点的特性来监控程序是否还在运行   二.zookeeper编程入门系列之zookeeper实现分布式进程监控 三. ...

  2. 导出数据到word

    打野的时候,碰到一个需求,导出简历信息. 两条思路: 第一条,直接画所有的表格,填充数据. 第二条,加载一个空的模板,然后填充数据. 因为导出的有格式的,所以最后选择了使用模板进行替换,然后填充数据. ...

  3. CentOS6.5修改/etc/pam.d/sshd后root无法ssh登陆

    现象:由于公司需要服务器的登陆操作进行安全加固,同事为了省事,直接把CentOS7上的/etc/pam.d/sshd替换掉CentOS6.5上的/etc/pam.d/sshd,导致root用户ssh登 ...

  4. npoi的基本操作

    ////自动换行               ////自动换行翻译成英文其实就是Wrap的意思,所以这里我们应该用WrapText属性,这是一个布尔属性               //style6. ...

  5. 定位所用的class

    方案 为解决类冲突,我们可以使用下述的方案定位一个class所在的位置 ClassName. package cn.j2se.junit.classpath; import static org.ju ...

  6. Flask实战第58天:发布帖子功能完成

    发布帖子后台逻辑完成 首先给帖子设计个模型,编辑apps.models.py class PostModel(db.Model): __tablename__ = 'post' id = db.Col ...

  7. Python标准库:内置函数divmod(a, b)

    本函数是实现a除以b,然后返回商与余数的元组. 如果两个参数a,b都是整数,那么会采用整数除法,结果相当于(a//b, a % b).如果a或b是浮点数,相当于(math.floor(a/b), a% ...

  8. Python - 字符和字符值之间的转换

    字符和字符值之间的转换 Python中, 字符和字符值, 直接的转换, 包含ASCII码和字母之间的转换,Unicode码和数字之间的转换; 也可以使用map, 进行批量转换, 输出为集合, 使用jo ...

  9. 【欧拉回路】Play On Words(6-16)

    [UVA10129]Play On Words 算法入门经典第6章6-16(P169) 题目大意:有一些单词,问能不能将它们串成字符串(只有前缀和后缀相同才能连) 试题分析:很巧妙的一道题,将每个单词 ...

  10. 【DP+树状数组】BZOJ1264-[AHOI2006]基因匹配Match

    [题目大意] 给定n个数和两个长度为n*5的序列,两个序列中的数均有1..n组成,且1..n中每个数恰好出现5次,求两个序列的LCS. [思路] 预处理每个数字在a[i]中出现的五个位置.f[i]示以 ...