尽量沿着边走距离最短。化减后 C(n+1,k)+ n - k,

预处理阶乘,Lucas定理组合数取模

DP?

Time Limit: 10000/3000 MS (Java/Others)    Memory Limit: 128000/128000 K (Java/Others)

Total Submission(s): 1899    Accepted Submission(s): 633

Problem Description



Figure 1 shows the Yang Hui Triangle. We number the row from top to bottom 0,1,2,…and the column from left to right 0,1,2,….If using C(n,k) represents the number of row n, column k. The Yang Hui Triangle has a regular pattern as follows.

C(n,0)=C(n,n)=1 (n ≥ 0) 

C(n,k)=C(n-1,k-1)+C(n-1,k) (0<k<n)

Write a program that calculates the minimum sum of numbers passed on a route that starts at the top and ends at row n, column k. Each step can go either straight down or diagonally down to the right like figure 2.

As the answer may be very large, you only need to output the answer mod p which is a prime.
 
Input
Input to the problem will consists of series of up to 100000 data sets. For each data there is a line contains three integers n, k(0<=k<=n<10^9) p(p<10^4 and p is a prime) . Input is terminated by end-of-file.
 
Output
For every test case, you should output "Case #C: " first, where C indicates the case number and starts at 1.Then output the minimum sum mod p.
 
Sample Input
1 1 2
4 2 7
 
Sample Output
Case #1: 0
Case #2: 5
 
Author
phyxnj@UESTC
 
Source
 

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm> using namespace std; typedef long long int LL; LL n,k,p; LL fact[1300][11000]; LL QuickPow(LL x,LL t,LL m)
{
if(t==0) return 1LL;
LL e=x,ret=1LL;
while(t)
{
if(t&1LL) ret=(ret*e)%m;
e=(e*e)%m;
t>>=1LL;
}
return ret%m;
} int prime[2000],pr;
bool vis[10100]; void get_prime()
{
for(int i=2;i<10100;i++)
{
if(vis[i]==false)
prime[pr++]=i;
for(int j=2*i;j<10100;j+=i)
vis[j]=true;
}
} void get_fact()
{
for(int i=0;i<1240;i++)
{
fact[i][0]=1LL;
for(int j=1;j<=prime[i]+10;j++)
{
fact[i][j]=(fact[i][j-1]*j)%prime[i];
}
}
} LL Lucas(LL n,LL m,LL p)
{
LL ret=1LL;
int id=lower_bound(prime,prime+pr,p)-prime;
while(n&&m)
{
LL a=n%p,b=m%p;
if(a<b) return 0;
ret=(ret*fact[id][a]*QuickPow((fact[id][b]*fact[id][a-b])%p,p-2,p)%p)%p;
n/=p; m/=p;
}
return ret%p;
} int main()
{
get_prime();
get_fact();
int cas=1;
while(scanf("%I64d%I64d%I64d",&n,&k,&p)!=EOF)
{
if(k>n/2) k=n-k;
LL ans=(Lucas(n+1,k,p)+n-k)%p;
printf("Case #%d: %I64d\n",cas++,ans);
}
return 0;
}

HDOJ 3944 DP?的更多相关文章

  1. hdu 3944 dp?

    DP? Time Limit: 10000/3000 MS (Java/Others)    Memory Limit: 128000/128000 K (Java/Others)Total Subm ...

  2. HDOJ 1069 DP

    开启DP之路 题目:http://acm.hdu.edu.cn/showproblem.php?pid=1069 描述一下: 就是给定N(N<=20)个方体,让你放置,求放置的最高高度,限制条件 ...

  3. hdu 3944 DP? 组合数取模(Lucas定理+预处理+帕斯卡公式优化)

    DP? Problem Description Figure 1 shows the Yang Hui Triangle. We number the row from top to bottom 0 ...

  4. hdoj 1257 DP||贪心

    最少拦截系统 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Subm ...

  5. HDOJ 1260 DP

    Tickets Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...

  6. HDU 3944 DP? [Lucas定理 诡异的预处理]

    DP? Time Limit: 10000/3000 MS (Java/Others)    Memory Limit: 128000/128000 K (Java/Others)Total Subm ...

  7. HDU 3944 DP? (Lucas定理)

    题意:在杨辉三角中让你从最上面到 第 n 行,第 m 列所经过的元素之和最小,只能斜向下或者直向下走. 析:很容易知道,如果 m 在n的左半部分,那么就先从 (n, m)向左,再直着向上,如果是在右半 ...

  8. [SinGuLaRiTy] 组合数学题目复习

    [SinGuLaRiTy] Copyright (c) SinGuLaRiTy 2017.  All Rights Reserved. [CQBZOJ 2011] 计算系数 题目描述 给定一个多项式( ...

  9. 找规律/数位DP HDOJ 4722 Good Numbers

    题目传送门 /* 找规律/数位DP:我做的时候差一点做出来了,只是不知道最后的 is_one () http://www.cnblogs.com/crazyapple/p/3315436.html 数 ...

随机推荐

  1. 洛谷——P2384 最短路

    P2384 最短路 题目背景 狗哥做烂了最短路,突然机智的考了Bosh一道,没想到把Bosh考住了...你能帮Bosh解决吗? 他会给你10000000000000000000000000000000 ...

  2. BZOJ 3632 外太空旅行(最大团)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3632 [题目大意] 求图中的最大团. [题解] 最大团问题是npc问题,因此可以考虑随 ...

  3. (原创)Stanford Machine Learning (by Andrew NG) --- (week 1) Introduction

    最近学习了coursera上面Andrew NG的Machine learning课程,课程地址为:https://www.coursera.org/course/ml 在Introduction部分 ...

  4. 一个 go 文件服务器 ssdb

    file system ssdb go http listen 文件存储到 ssdb gfs | twemproxy | ssdb(master) ssdb(slave) ssdb 连接协议为 red ...

  5. [典型漏洞分享]exported Android content provider引发的隐私泄露问题

    YS android手机APP对外开放多余的content provider,可任意增.删.改和查images数据库表格,导致隐私泄露 问题描述: YS android手机APP使用SQLITE数据库 ...

  6. SQL Server 2012的内部原理和故障排除(50):Burgess_Liu的专栏

    http://blog.csdn.net/Burgess_Liu/article/category/1821435/2 http://www.cnblogs.com/fygh/archive/2012 ...

  7. bash中的快捷键使用

    移动 ctrl + xx              光标在行首.位移动 ctrl + 方向左键      光标移动到前一个单词的开始 ctrl + 方向右键      光标移动到后一个单词的开始   ...

  8. linux下activityMQ安装

    >下载 到ActiveMQ官网,找到下载点. 目前, 官网为http://activemq.apache.org/ >启动 下载到本机,并解压   wget http://apache.f ...

  9. checkbox复选框居中

    选项框居中 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w ...

  10. 调用wsdl的接口-用axis

    // 创建一个服务(service)调用(call) org.apache.axis.client.Service service = new org.apache.axis.client.Servi ...