Painting A Board
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 3642   Accepted: 1808

Description

The CE digital company has built an Automatic Painting Machine (APM) to paint a flat board fully covered by adjacent non-overlapping rectangles of different sizes each with a predefined color. 

To color the board, the APM has access to a set of brushes. Each brush has a distinct color C. The APM picks one brush with color C and paints all possible rectangles having predefined color C with the following restrictions: 
To avoid leaking the paints and mixing colors, a rectangle can only be painted if all rectangles immediately above it have already been painted. For example rectangle labeled F in Figure 1 is painted only after rectangles C and D are painted. Note that each rectangle must be painted at once, i.e. partial painting of one rectangle is not allowed. 
You are to write a program for APM to paint a given board so that the number of brush pick-ups is minimum. Notice that if one brush is picked up more than once, all pick-ups are counted. 

Input

The first line of the input file contains an integer M which is the number of test cases to solve (1 <= M <= 10). For each test case, the first line contains an integer N, the number of rectangles, followed by N lines describing the rectangles. Each rectangle R is specified by 5 integers in one line: the y and x coordinates of the upper left corner of R, the y and x coordinates of the lower right corner of R, followed by the color-code of R. 
Note that: 
  1. Color-code is an integer in the range of 1 .. 20.
  2. Upper left corner of the board coordinates is always (0,0).
  3. Coordinates are in the range of 0 .. 99.
  4. N is in the range of 1..15.

Output

One line for each test case showing the minimum number of brush pick-ups.

Sample Input

1
7
0 0 2 2 1
0 2 1 6 2
2 0 4 2 1
1 2 4 4 2
1 4 3 6 1
4 0 6 4 1
3 4 6 6 2

Sample Output

3

Source

大致题意:

墙上有一面黑板,现划分为多个矩形,每个矩形都要涂上一种预设颜色C。

由于涂色时,颜料会向下流,为了避免处于下方的矩形的颜色与上方流下来的颜料发生混合,要求在对矩形i着色时,处于矩形i上方直接相邻位置的全部矩形都必须已填涂颜色。

在填涂颜色a时,若预设颜色为a的矩形均已着色,或暂时不符合着色要求,则更换新刷子,填涂颜色b。

注意:

1、  当对矩形i涂色后,发现矩形i下方的矩形j的预设颜色与矩形i一致,且矩形j上方的全部矩形均已涂色,那么j符合填涂条件,可以用 填涂i的刷子对j填涂,而不必更换新刷子。

2、  若颜色a在之前填涂过,后来填涂了颜色b,现在要重新填涂颜色a,还是要启用新刷子,不能使用之前用于填涂颜色a的刷子。

3、  若颜色a在刚才填涂过,现在要继续填涂颜色a,则无需更换新刷子。

4、  矩形着色不能只着色一部分,当确认对矩形i着色后,矩形i的整个区域将被着色。

首先要注意输入数据,每个矩形信息的输入顺序是 y x y x c,而不是 x y x y c

若弄反了x y坐标怎样也不会AC的.....

解题思路:

1. 染色问题. 先将图建立起来. 将当前小矩阵编号为i, 与其相邻的或则在上面的矩阵链接起来.(做标记)

2. 深搜解决. dfs(int nowlen,int ans,int color)
nowlen: 小矩阵已经染色的数目, ans: 当前使用画刷的次数. color: 当前画刷的颜色.

#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
#define inf 0x3f3f3f3f
#define N 20
struct node{
int x1,y1,x2,y2,color;
}e[N];
int map[N][N],deg[N],vis[N];
int result,n;
void read_graph(){
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
if(e[i].y2==e[j].y1&&(e[j].x1<=e[i].x2&&e[i].x1<=e[j].x2))
deg[j]++,map[i][j]=;
}
void dfs(int nowlen,int ans,int color){
if(ans>result) return ;
if(nowlen==n){
result=ans;return ;
}
for(int i=;i<=n;i++){
if(!vis[i]&&!deg[i]){
vis[i]=;
for(int j=;j<=n;j++)
if(map[i][j])
deg[j]--;
if(e[i].color==color)
dfs(nowlen+,ans,color);
else
dfs(nowlen+,ans+,e[i].color);
vis[i]=;
for(int j=;j<=n;j++)
if(map[i][j])
deg[j]++;
}
}
}
int main(){
int t;
scanf("%d",&t);
while(t--){
memset(map,,sizeof map);
memset(deg,,sizeof deg);
memset(vis,,sizeof vis);
scanf("%d",&n);
for(int i=;i<=n;i++)
scanf("%d%d%d%d%d",&e[i].y1,&e[i].x1,&e[i].y2,&e[i].x2,&e[i].color);
result=inf;
read_graph();
dfs(,,);
printf("%d\n",result);
}
return ;
}

poj1691的更多相关文章

  1. poj1691(dfs)

    链接 dfs了 写得有点乱 #include <iostream> #include<cstdio> #include<cstring> #include<a ...

  2. poj1691绘画板

    1 7 0 0 2 2 1 0 2 1 6 2 2 0 4 2 1 1 2 4 4 2 1 4 3 6 1 4 0 6 4 1 3 4 6 6 2 #include<stdio.h> #i ...

  3. poj分类 很好很有层次感。

    初期: 一.基本算法:      (1)枚举. (poj1753,poj2965)      (2)贪心(poj1328,poj2109,poj2586)      (3)递归和分治法.      ( ...

  4. 【转】POJ题目分类推荐 (很好很有层次感)

    OJ上的一些水题(可用来练手和增加自信) (poj3299,poj2159,poj2739,poj1083,poj2262,poj1503,poj3006,poj2255,poj3094)初期: 一. ...

  5. 【转】ACM训练计划

    [转] POJ推荐50题以及ACM训练方案 -- : 转载自 wade_wang 最终编辑 000lzl POJ 推荐50题 第一类 动态规划(至少6题, 和 必做) 和 (可贪心) (稍难) 第二类 ...

  6. POJ 题目分类(转载)

    Log 2016-3-21 网上找的POJ分类,来源已经不清楚了.百度能百度到一大把.贴一份在博客上,鞭策自己刷题,不能偷懒!! 初期: 一.基本算法: (1)枚举. (poj1753,poj2965 ...

  7. (转)POJ题目分类

    初期:一.基本算法:     (1)枚举. (poj1753,poj2965)     (2)贪心(poj1328,poj2109,poj2586)     (3)递归和分治法.     (4)递推. ...

  8. acm常见算法及例题

    转自:http://blog.csdn.net/hengjie2009/article/details/7540135 acm常见算法及例题  初期:一.基本算法:     (1)枚举. (poj17 ...

  9. poj分类

    初期: 一.基本算法:      (1)枚举. (poj1753,poj2965)      (2)贪心(poj1328,poj2109,poj2586)      (3)递归和分治法.      ( ...

随机推荐

  1. [机器学习实战] k邻近算法

    1. k邻近算法原理: 存在一个样本数据集,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系.输入没有标签的新数据后,将新数据的每个特征与样本集中数据对 ...

  2. unity3d的GUILayout布局

    GUILayout默认采用线性布局,从上到下.可以参见<unity3d常用控件> 如果要实现横向布局,则需要添加如下代码: GUILayout.BeginHorizontal (); // ...

  3. 【POJ 3140】 Contestants Division(树型dp)

    id=3140">[POJ 3140] Contestants Division(树型dp) Time Limit: 2000MS   Memory Limit: 65536K Tot ...

  4. Lintcode---单词的添加与查找

    设计一个包含下面两个操作的数据结构:addWord(word), search(word) addWord(word)会在数据结构中添加一个单词.而search(word)则支持普通的单词查询或是只包 ...

  5. 使用DataAdpater自动批量更新DataSet中的数据到数据库

    使用DataAdpater的批量更新,好处是不用写具体的sql脚本,尤其是做web服务这个优势非常吸引人. [WebMethod(Description = "Update服务提供的方法,将 ...

  6. Mac 全局变量 ~/.bash_profile 文件不存在的问题

    不存在就新建呗~ $ cd ~/ $ touch .bash_profile $ open -e .bash_profile 然后输入以下内容 # set color的部分是配置iterm2的字体颜色 ...

  7. Daemon,Jos,定时器

    --> FileSystemWatcher--> EventWaitHandle / AutoResetEvent / ManualResetEvent--> Mutex--> ...

  8. Atitit.预定义变量与变量预处理器

    Atitit.预定义变量与变量预处理器 1. 预定义变量与1 2. 变量预处理器1 3. 测试数据生成器3 1. 预定义变量与 姓名:$name 次数:$rdm 时间:$datetime 文件名:$f ...

  9. [na] centos如何通过vmware Windows共享文件

    参考 自我感觉都会使用Windows中的文件.在Windows与linux之间互传文件是一个问题.本方法介绍的是在linux下挂载Windows共享文件夹的方法来实现的 首先安装VMware Tool ...

  10. extjs,ComboReturn

    package cn.edu.hbcf.common.vo; import java.io.Serializable; public class ComboReturn implements Seri ...