尽管是一道E题,但真心并不很难~不难发现,有一些物品是一定要被选择的,我们所需要决策的仅仅只有那几个有重复价值的物品。

  而不同名字之间的概率并不互相影响,所以我们有 \(f[i][j]\) 表示名字为 \(i\) 的物品呼唤 \(j\) 次恰好获得前 \(j\) 大的价值的物品的概率。转移方程为:

 \(f[i][j] = f[i][j - 1] * j * \frac{1}{a[i][0]−j+1}\)

为什么要\(*j\) 呢?因为这第 \(j\) 个物品的排列顺序并不是固定的。

  要把这 \(n\) 个物品结合起来,我们可以再建立一个 dp 数组,\(g[i][[j]\) 表示前 \(i\) 个名字中,呼唤得到恰好 \(j\) 个有重复价值的物品。我们有转移方程:

 \(g[i][j] = \sum g[i - 1][j - 1] * f[i][rec[j] +1]\)

与 \(g[i][j] = \sum g[i - 1][j] * f[i][rec[i]]\)

以上两个分别表示当前名字是否呼唤到一个重复价值的物品。

  有没有感觉到有什么不对?没错,在计算的时候,我们的 \(f[i][k]\) 前面是没有带系数的,也就是我们并没有去统计以这样的方式去呼唤的概率是多少。但题目中明确说明当有几种可能呼唤到最高价值的物品时,我们会等概率的任选一种。所以我们可以考虑算出总的方案数 \(c[i][j]\) ,然后再除去这个方案数,即 \(ans =\frac{g[m][cnt]}{c[m][cnt]}\)。这个的转移很简单,可以看一下代码。表面 \(n ^{3}\) ,但第二维的枚举总数限定了范围,所以完全可以承受。

  不过我也很好奇……为什么 \(c[i][j]\) 一定要开 double 类型呢?不开就WA了……求解释呀,有知道的还请回复我,私信也可以呀!感激不尽QAQ

#include <bits/stdc++.h>
using namespace std;
#define maxn 2500
#define db long double
int n, m, tot, cnt, rec[maxn];
int a[maxn][maxn], b[maxn];
db f[maxn][maxn], g[maxn][maxn], c[maxn][maxn]; int read()
{
int x = , k = ;
char c; c = getchar();
while(c < '' || c > '') { if(c == '-') k = -; c = getchar(); }
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * k;
} bool cmp(int x, int y) { return x > y; }
void Up(db &x, db y) { x = x + y; } int main()
{
n = read(), m = read();
for(int i = ; i <= m; i ++)
{
a[i][] = read();
for(int j = ; j <= a[i][]; j ++)
a[i][j] = read(), b[++ tot] = a[i][j];
sort(a[i] + , a[i] + + a[i][], cmp);
}
sort(b + , b + + tot, cmp);
for(int i = n; i; i --)
if(b[i] == b[i - ]) cnt ++;
else break;
cnt += ; int K = b[n]; c[][] = ;
for(int i = ; i <= m; i ++)
{
f[i][] = ;
for(int j = ; j <= a[i][]; j ++)
{
if(a[i][j] < K) break;
if(a[i][j] > K) rec[i] = j;
f[i][j] = (db) f[i][j - ] * (db) j * ((db) / (db) (a[i][] - j + ));
}
}
for(int i = , tem = , up = ; i <= m; i ++)
{
int r1 = ;
for(int j = ; j <= up; j ++) c[i][j] = c[i - ][j];
for(int j = rec[i] + ; j <= a[i][]; j ++)
{
if(a[i][j] < K) break;
int t = j - rec[i]; r1 ++;
for(int k = ; k <= up; k ++)
c[i][k + t] = (c[i][k + t] + c[i - ][k]);
}
up += r1;
}
g[][] = ;
for(int i = ; i <= m; i ++)
for(int j = ; j <= cnt; j ++)
{
if(j) Up(g[i][j], g[i - ][j - ] * f[i][rec[i] + ]);
Up(g[i][j], g[i - ][j] * f[i][rec[i]]);
}
cout << fixed << setprecision() << (g[m][cnt] / (db) c[m][cnt]) << endl;
return ;
}

【题解】CF#229 E-Gifts的更多相关文章

  1. 竞赛题解 - CF Round #524 Div.2

    CF Round #524 Div.2 - 竞赛题解 不容易CF有一场下午的比赛,开心的和一个神犇一起报了名 被虐爆--前两题水过去,第三题卡了好久,第四题毫无头绪QwQ Codeforces 传送门 ...

  2. 题解——CF Manthan, Codefest 18 (rated, Div. 1 + Div. 2) T5(思维)

    还是dfs? 好像自己写的有锅 过不去 看了题解修改了才过qwq #include <cstdio> #include <algorithm> #include <cst ...

  3. 竞赛题解 - [CF 1080D]Olya and magical square

    Olya and magical square - 竞赛题解 借鉴了一下神犇tly的博客QwQ(还是打一下广告) 终于弄懂了 Codeforces 传送门 『题目』(直接上翻译了) 给一个边长为 \( ...

  4. [题解] [CF 1250J] The Parade

    题面 题目大意: 给定一个 \(n\) , 所有军人的数量均在 \([1, n]\) 给定 \(a_i\) 代表高度为 \(i\) 的军人的个数 你要将这些军人分成 \(k\) 行, 满足下面两个条件 ...

  5. 题解 CF 1372 B

    题目 传送门 题意 给出 \(n\),输出 \(a\) ,\(b\) (\(0 < a \leq b < n\)),使\(a+b=n\)且 \(\operatorname{lcm}(a,b ...

  6. 题解——CF Manthan, Codefest 18 (rated, Div. 1 + Div. 2) T4(模拟)

    随便模拟下就过了qwq 然后忘了特判WA了QwQ #include <cstdio> #include <algorithm> #include <cstring> ...

  7. 题解——CF Manthan, Codefest 18 (rated, Div. 1 + Div. 2) T3(贪心)

    是一道水题 虽然看起来像是DP,但其实是贪心 扫一遍就A了 QwQ #include <cstdio> #include <algorithm> #include <cs ...

  8. 题解——CF Manthan, Codefest 18 (rated, Div. 1 + Div. 2) T2(模拟)

    题目要求很简单,做法很粗暴 直接扫一遍即可 注意结果会爆int #include <cstdio> #include <algorithm> #include <cstr ...

  9. 题解——CF Manthan, Codefest 18 (rated, Div. 1 + Div. 2) T1(找规律)

    就是找一下规律 但是奈何昨天晚上脑子抽 推错了一项QwQ 然后重新一想 A掉了QwQ #include <cstdio> #include <algorithm> #inclu ...

随机推荐

  1. 2038: [2009国家集训队]小Z的袜子(hose)

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 9472  Solved: 4344 Desc ...

  2. Unbuntu安装RVM

    apt-get install curl #安装rvm curl -L https://get.rvm.io | bash #执行启动 source /home/mafei/.rvm/scripts/ ...

  3. 学会了vim中的自动补全功能

    好开心,再也不用再多个工具之间切换了,哈哈 擦,功能太弱

  4. 「日常训练」 Counting Cliques(HDU-5952)

    题意与分析 题源:2016ACM/ICPC沈阳现场赛. 这题让我知道了什么是团,不过最恶心的还是这题的数据了,卡了无数次- - 解决方法是维护一个G数组,不能去遍历邻接矩阵.至少我改了这么一个地方就过 ...

  5. Python全栈 MongoDB 数据库(Mongo、 正则基础、一篇通)

                  终端命令:       在线安装:         sudo apt-get install mongodb         默认安装路径 :  /var/lib/mong ...

  6. 机器学习-线性回归LinearRegression

    概述 今天要说一下机器学习中大多数书籍第一个讲的(有的可能是KNN)模型-线性回归.说起线性回归,首先要介绍一下机器学习中的两个常见的问题:回归任务和分类任务.那什么是回归任务和分类任务呢?简单的来说 ...

  7. DataSet转化为DataTable

    . DataTable dt = ds.Tables[]; . DataTable dt = dao.FillTables("GetOptions_DKI_City_HCPName" ...

  8. nodejs反向代理插件anyproxy安装

    目前我使用的是Anyproxy,AnyProxy .这个软件的特点是可以获取到https链接的内容.在2016年年初的时候微信公众号和微信文章开始使用https链接.并且Anyproxy可以通过修改r ...

  9. 三:QJM HDFS高可用

    本文介绍的是HDFS的一种HA方案.虽然有checkpoint node \backup node等,但是不能实现自动的failover. http://hadoop.apache.org/docs/ ...

  10. php+原生ajax实现图片文件上传功能实例

    html+js 代码 <!DOCTYPE html> <html> <head> <title>Html5 Ajax 上传文件</title> ...