尽管是一道E题,但真心并不很难~不难发现,有一些物品是一定要被选择的,我们所需要决策的仅仅只有那几个有重复价值的物品。

  而不同名字之间的概率并不互相影响,所以我们有 \(f[i][j]\) 表示名字为 \(i\) 的物品呼唤 \(j\) 次恰好获得前 \(j\) 大的价值的物品的概率。转移方程为:

 \(f[i][j] = f[i][j - 1] * j * \frac{1}{a[i][0]−j+1}\)

为什么要\(*j\) 呢?因为这第 \(j\) 个物品的排列顺序并不是固定的。

  要把这 \(n\) 个物品结合起来,我们可以再建立一个 dp 数组,\(g[i][[j]\) 表示前 \(i\) 个名字中,呼唤得到恰好 \(j\) 个有重复价值的物品。我们有转移方程:

 \(g[i][j] = \sum g[i - 1][j - 1] * f[i][rec[j] +1]\)

与 \(g[i][j] = \sum g[i - 1][j] * f[i][rec[i]]\)

以上两个分别表示当前名字是否呼唤到一个重复价值的物品。

  有没有感觉到有什么不对?没错,在计算的时候,我们的 \(f[i][k]\) 前面是没有带系数的,也就是我们并没有去统计以这样的方式去呼唤的概率是多少。但题目中明确说明当有几种可能呼唤到最高价值的物品时,我们会等概率的任选一种。所以我们可以考虑算出总的方案数 \(c[i][j]\) ,然后再除去这个方案数,即 \(ans =\frac{g[m][cnt]}{c[m][cnt]}\)。这个的转移很简单,可以看一下代码。表面 \(n ^{3}\) ,但第二维的枚举总数限定了范围,所以完全可以承受。

  不过我也很好奇……为什么 \(c[i][j]\) 一定要开 double 类型呢?不开就WA了……求解释呀,有知道的还请回复我,私信也可以呀!感激不尽QAQ

#include <bits/stdc++.h>
using namespace std;
#define maxn 2500
#define db long double
int n, m, tot, cnt, rec[maxn];
int a[maxn][maxn], b[maxn];
db f[maxn][maxn], g[maxn][maxn], c[maxn][maxn]; int read()
{
int x = , k = ;
char c; c = getchar();
while(c < '' || c > '') { if(c == '-') k = -; c = getchar(); }
while(c >= '' && c <= '') x = x * + c - '', c = getchar();
return x * k;
} bool cmp(int x, int y) { return x > y; }
void Up(db &x, db y) { x = x + y; } int main()
{
n = read(), m = read();
for(int i = ; i <= m; i ++)
{
a[i][] = read();
for(int j = ; j <= a[i][]; j ++)
a[i][j] = read(), b[++ tot] = a[i][j];
sort(a[i] + , a[i] + + a[i][], cmp);
}
sort(b + , b + + tot, cmp);
for(int i = n; i; i --)
if(b[i] == b[i - ]) cnt ++;
else break;
cnt += ; int K = b[n]; c[][] = ;
for(int i = ; i <= m; i ++)
{
f[i][] = ;
for(int j = ; j <= a[i][]; j ++)
{
if(a[i][j] < K) break;
if(a[i][j] > K) rec[i] = j;
f[i][j] = (db) f[i][j - ] * (db) j * ((db) / (db) (a[i][] - j + ));
}
}
for(int i = , tem = , up = ; i <= m; i ++)
{
int r1 = ;
for(int j = ; j <= up; j ++) c[i][j] = c[i - ][j];
for(int j = rec[i] + ; j <= a[i][]; j ++)
{
if(a[i][j] < K) break;
int t = j - rec[i]; r1 ++;
for(int k = ; k <= up; k ++)
c[i][k + t] = (c[i][k + t] + c[i - ][k]);
}
up += r1;
}
g[][] = ;
for(int i = ; i <= m; i ++)
for(int j = ; j <= cnt; j ++)
{
if(j) Up(g[i][j], g[i - ][j - ] * f[i][rec[i] + ]);
Up(g[i][j], g[i - ][j] * f[i][rec[i]]);
}
cout << fixed << setprecision() << (g[m][cnt] / (db) c[m][cnt]) << endl;
return ;
}

【题解】CF#229 E-Gifts的更多相关文章

  1. 竞赛题解 - CF Round #524 Div.2

    CF Round #524 Div.2 - 竞赛题解 不容易CF有一场下午的比赛,开心的和一个神犇一起报了名 被虐爆--前两题水过去,第三题卡了好久,第四题毫无头绪QwQ Codeforces 传送门 ...

  2. 题解——CF Manthan, Codefest 18 (rated, Div. 1 + Div. 2) T5(思维)

    还是dfs? 好像自己写的有锅 过不去 看了题解修改了才过qwq #include <cstdio> #include <algorithm> #include <cst ...

  3. 竞赛题解 - [CF 1080D]Olya and magical square

    Olya and magical square - 竞赛题解 借鉴了一下神犇tly的博客QwQ(还是打一下广告) 终于弄懂了 Codeforces 传送门 『题目』(直接上翻译了) 给一个边长为 \( ...

  4. [题解] [CF 1250J] The Parade

    题面 题目大意: 给定一个 \(n\) , 所有军人的数量均在 \([1, n]\) 给定 \(a_i\) 代表高度为 \(i\) 的军人的个数 你要将这些军人分成 \(k\) 行, 满足下面两个条件 ...

  5. 题解 CF 1372 B

    题目 传送门 题意 给出 \(n\),输出 \(a\) ,\(b\) (\(0 < a \leq b < n\)),使\(a+b=n\)且 \(\operatorname{lcm}(a,b ...

  6. 题解——CF Manthan, Codefest 18 (rated, Div. 1 + Div. 2) T4(模拟)

    随便模拟下就过了qwq 然后忘了特判WA了QwQ #include <cstdio> #include <algorithm> #include <cstring> ...

  7. 题解——CF Manthan, Codefest 18 (rated, Div. 1 + Div. 2) T3(贪心)

    是一道水题 虽然看起来像是DP,但其实是贪心 扫一遍就A了 QwQ #include <cstdio> #include <algorithm> #include <cs ...

  8. 题解——CF Manthan, Codefest 18 (rated, Div. 1 + Div. 2) T2(模拟)

    题目要求很简单,做法很粗暴 直接扫一遍即可 注意结果会爆int #include <cstdio> #include <algorithm> #include <cstr ...

  9. 题解——CF Manthan, Codefest 18 (rated, Div. 1 + Div. 2) T1(找规律)

    就是找一下规律 但是奈何昨天晚上脑子抽 推错了一项QwQ 然后重新一想 A掉了QwQ #include <cstdio> #include <algorithm> #inclu ...

随机推荐

  1. android 几个工具方法

    集合几个工具方法,方便以后使用. 1.获取手机 分辨率屏幕: public static void printScreenInfor(Context context){ DisplayMetrics ...

  2. 「LeetCode」0002-Longest Substring Without Repeating Characters(C++)

    分析 贪心思想.注意更新每次判断的最长不同子串的左区间的时候,它是必须单调增的(有时候会在这里翻车). 代码 关掉流同步能有效提高速度. static const auto io_sync_off = ...

  3. 第八模块:算法&设计模式、企业应用 第2章 企业应用工具学习

    第八模块:算法&设计模式.企业应用 第2章 企业应用工具学习

  4. python编程os、os.path 模块中关于文件、目录常用的函数使用方法

    os模块中关于文件/目录常用的函数使用方法   函数名 使用方法 getcwd() 返回当前工作目录 chdir(path) 改变工作目录 listdir(path='.') 列举指定目录中的文件名( ...

  5. ionic ios样式偏移解决方案。

    在css属性内增加: .item-ios [item-end] { //解决ios系统上尾部图标出现重影而增加的格式. margin: 0px -15.3px 0px 0px; margin-bott ...

  6. CSS 之 选择器

    CSS的常见选择器 一.简单选择器 Simple Selectors 选择器 含义 * 通用元素选择器,匹配任何元素 E 标签选择器,匹配所有使用E标签的元素 .info class选择器,匹配所有c ...

  7. 剑指offer-二叉树搜索树与双向链表25

    题目描述 输入一棵二叉搜索树,将该二叉搜索树转换成一个排序的双向链表.要求不能创建任何新的结点,只能调整树中结点指针的指向. class Solution: def Convert(self, pRo ...

  8. python常用命令—windows终端查看安装包信息

    1, pip list 会将 Python 的所有安装包全部显示出来, 左边是包名, 右边是包的版本号. 2, pip show 包的名字 会将这个包的名字,版本号,包的功能说明,按装这个包的路径显示 ...

  9. 统计学习五:3.决策树的学习之CART算法

    全文引用自<统计学习方法>(李航) 分类与回归树(classification and regression tree, CART)模型是由Breiman等人于1984年提出的另一类决策树 ...

  10. shiro控制登陆成功后跳回之前的页面

    登陆之后跳回之前的页面是在做登陆注册模块时遇到的一个需求,也是很有必要的.若用户直接访问登陆页面,那可以控制它直接到首页,但是要用户没有登陆直接访问自己的购物车等需要经过身份认证的页面,或者因为ses ...