https://www.lydsy.com/JudgeOnline/problem.php?id=4137

https://www.luogu.org/problemnew/show/P4585

火星上的一条商业街里按照商店的编号1,2 ,…,n ,依次排列着n个商店。商店里出售的琳琅满目的商品中,每种商品都用一个非负整数val来标价。每个商店每天都有可能进一些新商品,其标价可能与已有商品相同。 
火星人在这条商业街购物时,通常会逛这条商业街某一段路上的所有商店,譬如说商店编号在区间[L,R]中的商店,从中挑选1件自己最喜欢的商品。每个火星人对商品的喜好标准各不相同。通常每个火星人都有一个自己的喜好密码x。对每种标价为val的商品,喜好密码为x的火星人对这种商品的喜好程度与val异或x的值成正比。也就是说,val xor x的值越大,他就越喜欢该商品。每个火星人的购物卡在所有商店中只能购买最近d天内(含当天)进货的商品。另外,每个商店都有一种特殊商品不受进货日期限制,每位火星人在任何时刻都可以选择该特殊商品。每个商店中每种商品都能保证供应,不存在商品缺货的问题。 
对于给定的按时间顺序排列的事件,计算每个购物的火星人的在本次购物活动中最喜欢的商品,即输出val xor x的最大值。这里所说的按时间顺序排列的事件是指以下2种事件: 
事件0,用三个整数0,s,v,表示编号为s的商店在当日新进一种标价为v 的商品。 
事件1,用5个整数1,L,R,x,d,表示一位火星人当日在编号为L到R的商店购买d天内的商品,该火星人的喜好密码为x。

参考:https://blog.csdn.net/lvzelong2014/article/details/78688727

继续练习线段树分治,虽然还是离不开题解但是已经知道拿什么分治了。

以及越来越深感线段树分治并不是线段树这一个事实了,开个专栏吧。

显然d的存在使得一些商品被“撤销”了,但是每个人的d都是不同的,我们就没法把商品放到线段树上。

于是反其道而行之,把人扔到线段树上,把商品放到线段树上跑。

然后每次询问异或最大值就是可持久化trie了。

PS:时刻注意这里面有两个量:商品所在的商店,以及商品上货时间。不要搞混了。

我们预先按照商店排序,然后根据当前的时间区间再重新分配即可(有点像整体二分)。

#include<cmath>
#include<queue>
#include<vector>
#include<cstdio>
#include<cctype>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
const int N=1e5+;
const int B=;
inline int read(){
int X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
struct data{
int l,r,x,L,R;
}p[N];
struct good{
int s,v,t;
}q[N],tmpl[N],tmpr[N];
struct node{
int son[],sum;
}tr[N*];
int n,m,pcnt,qcnt,ans[N],rt[N],num[N],pool;
vector<int>seg[N*];
inline bool cmp(good a,good b){
return a.s<b.s;
}
void insert(int y,int &x,int k,int now){
tr[x=++pool]=tr[y];
tr[x].sum++;
if(now<)return;
bool p=k&(<<now);
insert(tr[y].son[p],tr[x].son[p],k,now-);
return;
}
int query(int nl,int nr,int k,int now){
if(now<)return ;
bool p=k&(<<now);
int delta=tr[tr[nr].son[p^]].sum-tr[tr[nl].son[p^]].sum;
if(delta>)return (<<now)+query(tr[nl].son[p^],tr[nr].son[p^],k,now-);
else return query(tr[nl].son[p],tr[nr].son[p],k,now-);
}
void add(int a,int l,int r,int l1,int r1,int x){
if(r<l1||r1<l)return;
if(l1<=l&&r<=r1){
seg[a].push_back(x);return;
}
int mid=(l+r)>>;
add(a<<,l,mid,l1,r1,x);add(a<<|,mid+,r,l1,r1,x);
}
int find(int l,int r,int k){
l--;
while(l<r){
int mid=(l+r+)>>;
if(num[mid]<=k)l=mid;
else r=mid-;
}
return l;
}
void work(int a,int l,int r){
pool=;int cnt=;
for(int i=l;i<=r;i++){
num[++cnt]=q[i].s;
insert(rt[cnt-],rt[cnt],q[i].v,B);
}
for(int i=;i<seg[a].size();i++){
int id=seg[a][i];
int L=find(,cnt,p[id].l-),R=find(,cnt,p[id].r);
ans[id]=max(ans[id],query(rt[L],rt[R],p[id].x,B));
}
}
void divide(int a,int l,int r,int l1,int r1){
int mid=(l+r)>>,len1=,len2=;
work(a,l1,r1);
for(int i=l1;i<=r1;i++){
if(q[i].t<=mid)tmpl[len1++]=q[i];
else tmpr[len2++]=q[i];
}
for(int i=;i<len1;i++)q[i+l1]=tmpl[i];
for(int i=;i<len2;i++)q[i+l1+len1]=tmpr[i];
if(l==r)return;
divide(a<<,l,mid,l1,l1+len1-);
divide(a<<|,mid+,r,l1+len1,r1);
}
int main(){
n=read(),m=read();
for(int i=;i<=n;i++)insert(rt[i-],rt[i],read(),B);
for(int i=;i<=m;i++){
int op=read();
if(!op){
q[++qcnt].s=read();q[qcnt].v=read();
q[qcnt].t=qcnt;
}else{
p[++pcnt].l=read();p[pcnt].r=read();
p[pcnt].x=read();int d=read();
p[pcnt].L=max(qcnt-d+,);p[pcnt].R=qcnt;
ans[pcnt]=query(rt[p[pcnt].l-],rt[p[pcnt].r],p[pcnt].x,B);
}
}
for(int i=;i<=pcnt;i++)add(,,qcnt,p[i].L,p[i].R,i);
sort(q+,q+qcnt+,cmp);
divide(,,qcnt,,qcnt);
for(int i=;i<=pcnt;i++)printf("%d\n",ans[i]);
return ;
}

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+

+++++++++++++++++++++++++++++++++++++++++++

BZOJ4137 & 洛谷4585:[FJOI2015]火星商店问题的更多相关文章

  1. 洛谷 P4585 [FJOI2015]火星商店问题 解题报告

    P4585 [FJOI2015]火星商店问题 题目描述 火星上的一条商业街里按照商店的编号\(1,2,\dots,n\) ,依次排列着\(n\)个商店.商店里出售的琳琅满目的商品中,每种商品都用一个非 ...

  2. [洛谷P4585] [FJOI2015] 火星商店问题

    Description 火星上的一条商业街里按照商店的编号 \(1\),\(2\) ,-,\(n\) ,依次排列着 \(n\) 个商店.商店里出售的琳琅满目的商品中,每种商品都用一个非负整数 \(va ...

  3. 洛谷$P4585\ [FJOI2015]$火星商店问题 线段树+$trie$树

    正解:线段树+$trie$树 解题报告: 传送门$QwQ$ $umm$题目有点儿长我先写下题目大意趴$QwQ$,就说有$n$个初始均为空的集合和$m$次操作,每次操作为向某个集合内加入一个数$x$,或 ...

  4. 洛谷 P4585 [FJOI2015]火星商店问题

    (勿看,仅作笔记) bzoj权限题... https://www.luogu.org/problemnew/show/P4585 对于特殊商品,直接可持久化trie处理一下即可 剩下的,想了一段时间c ...

  5. [FJOI2015]火星商店问题

    [FJOI2015]火星商店问题 神仙线段树分治...不过我不会. 这题用线段树套可持久化Trie还是能写的. 常数有点大,洛谷垫底水平. // luogu-judger-enable-o2 #inc ...

  6. 【LG4585】[FJOI2015]火星商店问题

    [LG4585][FJOI2015]火星商店问题 题面 bzoj权限题 洛谷 \(Notice:\) 关于题面的几个比较坑的地方: "一天"不是一个操作,而是有0操作就相当于一天开 ...

  7. [FJOI2015]火星商店问题(线段树分治,可持久化,Trie树)

    [FJOI2015]火星商店问题 前天考了到线段树分治模板题,全场都切了,就我不会QAQ 于是切题无数的Tyher巨巨就告诉我:"你可以去看看火星商店问题,看了你就会了." 第一道 ...

  8. 【题解】P4585 [FJOI2015]火星商店问题(线段树套Trie树)

    [题解]P4585 [FJOI2015]火星商店问题(线段树套Trie树) 语文没学好不要写省选题面!!!! 题目大意: 有\(n\)个集合,每个集合有个任意时刻都可用的初始元素.现在有\(m\)个操 ...

  9. 【洛谷】P4585 [FJOI2015]火星商店问题

    题解 题目太丧,OJ太没有良心,我永远喜欢LOJ! (TLE报成RE,垃圾洛谷,我永远喜欢LOJ) 好的,平复一下我debug了一上午崩溃的心态= =,写一写这道题的题解 把所有限制去掉,给出一个值, ...

随机推荐

  1. dota2交换物品

    改成.bat 因为文件就可以 echo/>>c:/windows/system32/drivers/etc/hostsecho 111.230.82.224 steamcommunity. ...

  2. 「专题训练」Boredom(CodeForces Round #260 Div.1 A)

    题意(Codeforces-455A) 给你\(n\)个数,你每次可以选择删除去一个数\(x\)获得\(x\)分,但是所有为\(x+1\)和\(x-1\)的数都得删去.问最大获得分数. 分析 这是一条 ...

  3. 微信小程序—day03

    昨日问题 接着上一篇,昨天遇到的scroll-view组件不能滚动的问题. 今天经过调试,发现是由于:图片的实际宽高,大于给image设定的宽高导致的. 解决办法: 减小图片的实际宽高,使之小于ima ...

  4. flume-kafka-storm-hdfs-hadoop-hbase

    # bigdata-demo 项目地址: https://github.com/windwant/bigdata-demo.git hadoop: hadoop hdfs操作 log输出到flume ...

  5. CSP201503-2:数字排序

    引言:CSP(http://www.cspro.org/lead/application/ccf/login.jsp)是由中国计算机学会(CCF)发起的"计算机职业资格认证"考试, ...

  6. mysql数据库常用操作

    目前最流行的数据库: oracle.mysql.sqlserver.db2.sqline --:单行注释 #:也是单行注释 /* 注释内容*/:多行注释 mysql -uroot -p密码:登录mys ...

  7. 深入理解 Vuejs 动画效果

    本文主要归纳在 Vuejs 学习过程中对于 Vuejs 动画效果的各个相关要点.由于本人水平有限,如文中出现错误请多多包涵并指正,感谢.如果需要看更清晰的代码高亮,请跳转至我的个人站点的 深入理解 V ...

  8. 【shell 练习2】产生随机数的方法总结

    一.产生随机数 ()RANDOM 产生随机数 [root@localhost ~]# echo $RANDOM [root@localhost ~]# )) #想要生成八个随机数,随便加一个八位的数字 ...

  9. visionpro9.0破解

    visionpro9.0软件下载 提供一个visionpro9.0视频教程学习网站:点击下面链接进入. ------------------------Halcon,Visionpro高清视频教程,点 ...

  10. Python的string模块化方法

    Python 2.X中曾经存在过一个string模块,这个模块里面有很多操作字符串的方法,但是在Python 3.X中,这些模块化方法已经被移除了(但是string模块本身没有被移除,因为它还有其他可 ...